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ABSTRACT
Diminishing the appearance of a fence in an image, so-called 
de-fencing, is a challenging research area due to the character-
istics of fences (i.e., thin, texture-less, etc.) and a requirement 
for occluded background restoration. In this paper, we de-
scribe a de-fencing method for an image sequence captured 
via a user’s sweep motion, in which occluded background 
is potentially observed. To make use of geometric and ap-
pearance natures of such consecutive images, we use two 
well-known approaches: Structure from motion and light field 
rendering. The results using real image sequences showed that 
our method is superior to an image-inpainting-based approach 
in some use cases.
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INTRODUCTION
Recovering occluded objects in a scene, also known as di-
minished reality (DR), is a challenging issue that has recently 
received increasing attention [12]. Visual obstacles are seen 
through with variety techniques such as image-inpainting, 
which is used to fill in the obstacle pixels with ones having 
similar features. Due to the similar problem statements, we 
can consider image de-fencing a kind of DR method. De-
fencing refers to techniques to diminish the appearance of a 
fence in an image to create a fence-free view. Such a technique 
is useful, for example, when a photographer takes a photo of 
a tourist landmark but the scene is occluded by fences for 
security reasons.

There are two challenging issues in de-fencing; 1) fence detec-
tion and 2) background restoration (i.e., restoration of pixels
on fence pixels).

Fence detection: The difficulties in fence detection and seg-
mentation lays in the characteristics of fences; they are thin,
texture-less, etc. Thus, many existing methods of segmenting
fence pixels from other pixels require fully manual or semi-
automated efforts [13], although recent work has introduced
some automated methods [3, 4, 5, 9, 8].

Background restoration: To fill in the detected fence pixels,
we can use one of DR methods, image-inpainting, to fill in the
pixels with the other pixels [8], or multi-viewpoint images to
observe the hidden regions [5, 9].

An original image de-fencing work was proposed by Liu et
al. [8], which introduced foreground-background segmenta-
tion based on the fact that fences have nearly regular patterns.
Whereas, the method has limitation due to the algorithm rely-
ing on ideal regular patterns and uses a single image resource
for background restoration. To overcome such limitations,
later researches used richer resources, videos, for these tasks
since occluded regions in a frame are visible in the other
frames. [5, 9] are pioneering works that used videos for the de-
fencing problem. They identified fence pixels by differences
in optical flow at each frame. [3, 4] used depth information
since fences always appear closer to the camera than the back-
ground.

As an alternative of these methods, we propose combining a
well-known computer vision and a graphics method, structure
from motion (SfM) and light field rendering (LFR) respec-
tively. Our contributions can be summarized as follows:

• Segmenting foreground and background regions based on
depth information from SfM and dense reconstruction,

• Recovering occluded background pixels using a modified
LFR scheme assuming an image sequence captured by
user’s sweep camera motion,

• and a framework for combining the above two approaches
for de-fencing.

DE-FENCING USING SFM AND LFR

Scene Capture
Following the literatures [5, 9], we expect that regions oc-
cluded by fences in a frame are observable in other frames in a



(a) A frame of a video sequence

(b) A recovered 3D point cloud with colors

(c) A frame with fence mask obtained by back-projection of the
3D point cloud of fence structure

Figure 1. Fence masking using a 3D point cloud

video. To record an image sequence, we have to move the cam-
era in a diagonal direction against the fence rectangle. Note
that this diagonal sweep motion is essential for the proposed
method to make the camera fully observes the background.

Fence Detection
Geometric information of the captured scene is recovered as
a 3D point cloud by SfM and multi-view stereo [10, 11] us-
ing COLMAP, followed by separation of fence and non-fence
point clouds. Figure 1 (a) and (b) shows an example of an
input frame and the corresponding 3D point cloud respec-
tively. The feature points in each frame are detected by SIFT
and matched among the consecutive frames using sequential
matching. From obtained point correspondences, each frame
is registered with its camera pose and triangulated points as a
sparse point cloud. Then, depth and normal map are computed
from registered pairs, and fused to the sparse point cloud to
reconstruct dense one. Note that all frames share the same
intrinsic parameters given by bundle adjustment in the SfM
since the video is captured using a single camera.

After the dense 3D reconstruction, we separate the 3D point
cloud to fence and non-fence ones. To achieve this, we obtain
T % closest points (e.g., T = 35) among the 3D point cloud in
a camera coordinate system as a fence point cloud. Figure 1
(c) shows a frame with fence mask, which is a re-projection of
such fence point cloud colored in black. This re-projection is
computed by perspective transformation with camera parame-
ters and a camera pose that extracted from each frame in SfM
phase, as in the following equation.

σ x̃ = A[R|t]X̃ (1)

where σ is a scale factor, x̃ is the homogeneous re-projected
point coordinates, X̃ is homogeneous 3D point coordinates, A
is a 3×3 matrix of intrinsic parameters, and [R|t] is the 3×4
matrix of extrinsic parameters describing the camera motion.

Background Restoration
Here, we recover the missing pixels in the detected fence
regions based on LFR, which is an image based rendering
method for generating new views from arbitrary camera po-
sitions [1, 2, 6, 7]. LFR uses four parameters, r = (u,v,s, t),
to represent a scene. As shown in Figure 2, a ray r represents
a light ray that passes through a camera plane at (u,v) and a
focal plane at (s, t) in a virtual image C. A pixel color at (s, t)
in the visual view C is, therefore, calculated by blending the
corresponding colors in data cameras’ images Di.

To make use of the obtained data so far, we modified the LFR
[1, 2] as described in the pseudo code in Algorithm 1. Given a
background 3D point X at a missing pixel position x and regis-
tered data cameras Di, we render the background by blending
the Di images. The pixels to be blended in Di are calculated
by projecting the 3D point to Di. However, the masked pixels
in Di are given zero weight for the blending and, as a result,
the fence pixels are not counted for the blending. In addition,
the blending function is weighted with inverse proportional of
euclidean distance from (u,v)’s camera position to the render
frame position, which means more weight is given to a ray
from the camera that aligns closer to C.

EXPERIMENTAL RESULTS

Setup
We set up five experimental scenes with combinations of vari-
ous types of objects and fences to confirm the robustness of
the proposed method against scene variations. Figure 3 (a)
shows the scenes including indoor (Scene 1, 2, and 3) and
outdoor scenes (Scene 4 and 5). We compare results by the
proposed method and by PhotoShop Content-Aware Fill (i.e.,
image-inpainting) as a baseline. Note that both of the meth-
ods use the same mask images as in Figure 3 (b) given by an
approach described in Section 2.2. Here, our discussions are
limited to qualitative manners and quantitative ones remain in
our future work.

We recorded five image sequences in the scenes using iPhone
8 Plus (960×540 pixels at 30Hz). For each scene, we recorded
399, 519, 499, 534, and 463 frames of videos and used 40, 40,
40, 54, and 180 closest data cameras in Euclidean distance for
the LFR. On the other hand, the baseline method used a single



Algorithm 1: LFR for De-fencing

IC(x) :Color at x ∈ R2 of the user camera C
IDi(x) :Color at x of a data camera Di

IDi
M (x) :{0, 1} at x of a data camera Di

X :3D position corresponding to IC(x) (i.e., focal plane)
IR(x) :Resultant color of de-fenced LFR at x

1 foreach Di do
2 di← EuclideanDistance(C,Di)

3 foreach x within IC do
4 sumdi ← 0
5 foreach Di do

/* Ψ projects input 3D point to a camera
*/

6 x′←Ψ(X,Di)

7 sumdi ← sumdi + IDi
M (x′) 1

exp(d2
i )

8 IR(x)← black
9 foreach Di do

10 x′←Ψ(X,Di)

11 IR(x)← IR(x)+ IDi
M (x′) IDi (x′)

exp(d2
i )

12 IR(x)← IR(x)
sumdi

image as a resource for its background restoration (i.e., Figure
3 (a)).

De-fencing Results and Discussions
Figure 3 (c) and (d) shows the results of the proposed method
and the baseline. In most scenes, the proposed method gives
us impressions that the fences are diminished. However, we
should note that the de-fencing by the proposed method re-
places the masked pixels with the background pixels observed
at different frames while the region results in blurry artifacts.
Especially in Scene 4 and 5 where the fence regions relatively
densely exist, the proposed method obtains distorted images.
We consider that such blurry effects can be reduced by using
depth information given by the dense reconstruction, while we
currently assume that the focal plane is placed at infinity (i.e.,
X is at infinity).

On the other hand, the baseline method does not produce such
blurry effects, while it tends to recover fence pixels due to the
remaining fence pixels. That is, we consider that the remaining
fence pixels induced by inaccurate fence masking gives cues
for image-inpainting scheme to optimize to fence restoration
rather than background restoration.

CONCLUSION
In this paper, we proposed an alternative method for image
de-fencing, which gives a framework of a combination of SfM-
based fence detection and LFR-based background restoration.
The qualitative evaluations showed that the proposed method
suffered from a trade-off between the number of blended data

Figure 2. Light field rendering parameterization

camera images and blurry artifacts at image edges. How-
ever, we also suggested that the proposed method gives more
reasonable background information than the baseline image-
inpainting method does due to its multi-viewpoint image na-
ture. In the future work, we will extend our evaluations to
quantitative manners and use SfM-induced depth information
for reducing blurry effects in the results.
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Figure 3. Experimental results
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