
HACHIUMA, PIRCHHEIM ET AL.: DETECTFUSION 1

DetectFusion: Detecting and Segmenting
Both Known and Unknown Dynamic Objects
in Real-time SLAM

Ryo Hachiuma1

ryo-hachiuma@keio.jp

Christian Pirchheim2

pirchheim@icg.tugraz.at

Dieter Schmalstieg2,3

schmalstieg@tugraz.at

Hideo Saito1

hs@keio.jp

1 Keio University
Yokohama, Japan

2 Graz University of Technology
Graz, Austria

3 VRVis Research Center
Vienna, Austria

Abstract

We present DetectFusion, an RGB-D SLAM system that runs in real time and can ro-
bustly handle semantically known and unknown objects that can move dynamically in
the scene. Our system detects, segments and assigns semantic class labels to known
objects in the scene, while tracking and reconstructing them even when they move in-
dependently in front of the monocular camera. In contrast to related work, we achieve
real-time computational performance on semantic instance segmentation with a novel
method combining 2D object detection and 3D geometric segmentation. In addition, we
propose a method for detecting and segmenting the motion of semantically unknown ob-
jects, thus further improving the accuracy of camera tracking and map reconstruction.
We show that our method performs on par or better than previous work in terms of lo-
calization and object reconstruction accuracy, while achieving about 20 fps even if the
objects are segmented in each frame.

1 Introduction
Simultaneous localization and mapping (SLAM) is an important enabling technology for
autonomous driving, robotics, augmented reality and virtual reality. Contemporary SLAM
systems jointly estimate a map of an unknown environment and the pose of a camera, using
either RGB [10, 12] or RGB + depth (RGB-D) [11, 23]. Most SLAM systems build purely
geometric maps and assume a static scene.

However, the inherent assumption that the observed scene is static can be problematic
in practice. If the system has no notion of moving objects, any observed motion must be
treated as an outlier and be ignored by tracking and mapping. Thus, a SLAM system de-
signed with the assumption of a static scene will suffer from map corruption in case of small
amounts of motion. Ultimately, tracking will fail if the dominant observed motion does not

c© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Mur-Artal and Tardos} 2017

Citation
Citation
{Newcombe, Lovegrove, and Davison} 2011

Citation
Citation
{{Newcombe}, {Izadi}, {Hilliges}, {Molyneaux}, {Kim}, {Davison}, {Kohi}, {Shotton}, {Hodges}, and {Fitzgibbon}} 2011

Citation
Citation
{Whelan, Salas-Moreno, Glocker, Davison, and Leutenegger} 2016

2 HACHIUMA, PIRCHHEIM ET AL.: DETECTFUSION

Method Static
map

Object
maps

Semantic segmentation
(known objects)

Motion segmentation
(unknown dynamic objects)

System overall
performance

ElasticFusion [23] X frame-rate

StaticFusion [19] X frame-rate frame-rate

Co-Fusion [17] X X frame-rate frame-rate

MaskFusion [18] X X
keyframe-rate (5Hz)

(Mask R-CNN)
frame-rate

(on two GPUs)

MID-Fusion [24] X X
offline

(Mask R-CNN) frame-rate not real-time

Ours X X
frame-rate (20Hz)

(YOLOv3 + geom.segm.) frame-rate frame-rate

Table 1: Comparison of approaches and runtime performance of object-level dynamic dense
SLAM methods (ElasticFusion serves as reference for static dense SLAM).

come from the camera’s ego-motion, but from large moving objects, such as walking people.
Overcoming these difficulties is currently at the front of research into SLAM systems.

1.1 Previous work
To make SLAM more robust, recent research has tackled dynamic scenes. We can discrim-
inate three research directions in dynamic SLAM: static background reconstruction, non-
rigid object reconstruction, and reconstruction of multiple dynamic rigid objects. The first
approach, static background reconstruction, concentrates solely on mapping the motionless
part of the scene and on accurate camera tracking [19, 22], while explicitly detecting and ex-
cluding dynamic foreground objects. The second approach, non-rigid object reconstruction,
focuses on objects undergoing deformation, such as humans [2, 3, 13]. The third approach,
dynamic multi-object reconstruction, aims to explicitly model individual rigid objects by
tracking every moving object in the scene individually, creating a sub-map for it, and fusing
observations only into the correct sub-map [17, 18, 24].

Another opportunity to improve SLAM comes from adding semantic information to the
reconstructed maps [8, 9] to aid scene understanding. Since object detection and classifica-
tion can now be performed at interactive rates using convolutional neural networks (CNN),
SLAM substantially benefits from robust detection and segmentation of object instances.
Once objects are detected, they can be tracked and reconstructed independently.

Three recent systems which provide dynamic multi-object SLAM in the above sense are
Co-Fusion [17], MaskFusion [18] and MID-Fusion [24]. The most important distinction of
these systems is in how they perform segmentation. Co-Fusion segments dynamic image
pixels by their motion, computed via geometric and photometric residuals during ICP-based
tracking [6]. The geometric segmentation of Co-Fusion can be assisted by applying an in-
stance segmentation algorithm, SharpMask [14]. However, SharpMask does not run in real
time, and the Co-Fusion map does not store any semantics. In contrast, MaskFusion attacks
instance segmentation by applying Mask R-CNN [5] to a subset of frames, effectively de-
coupling tracking and segmentation. Even with this decoupling, MaskFusion is expensive:
It requires two Nvidia TITAN X GPU cards, one for tracking at 20Hz (for three objects), one
for segmentation at only 5Hz, requiring frame skipping and re-synchronization. Similarly,
MID-Fusion uses pre-computed Mask R-CNN and runs at a reported framerate of 2-3Hz.
Consequently, these system cannot handle fast motions well (or at all).

Citation
Citation
{Whelan, Salas-Moreno, Glocker, Davison, and Leutenegger} 2016

Citation
Citation
{{Scona}, {Jaimez}, {Petillot}, {Fallon}, and {Cremers}} 2018

Citation
Citation
{R{ü}nz and Agapito} 2017

Citation
Citation
{R{ü}nz, Buffier, and Agapito} 2018

Citation
Citation
{Xu, Li, Tzoumanikas, Bloesch, Davison, and Leutenegger} 2018

Citation
Citation
{{Scona}, {Jaimez}, {Petillot}, {Fallon}, and {Cremers}} 2018

Citation
Citation
{{Vespa}, {Nikolov}, {Grimm}, {Nardi}, {Kelly}, and {Leutenegger}} 2018

Citation
Citation
{Dou, Khamis, Degtyarev, Davidson, Fanello, Kowdle, Escolano, Rhemann, Kim, Taylor, Kohli, Tankovich, and Izadi} 2016

Citation
Citation
{Dou, Davidson, Fanello, Khamis, Kowdle, Rhemann, Tankovich, and Izadi} 2017

Citation
Citation
{Newcombe, Fox, and Seitz} 2015

Citation
Citation
{R{ü}nz and Agapito} 2017

Citation
Citation
{R{ü}nz, Buffier, and Agapito} 2018

Citation
Citation
{Xu, Li, Tzoumanikas, Bloesch, Davison, and Leutenegger} 2018

Citation
Citation
{{McCormac}, {Clark}, {Bloesch}, {Davison}, and {Leutenegger}} 2018

Citation
Citation
{McCormac, Handa, Davison, and Leutenegger} 2017

Citation
Citation
{R{ü}nz and Agapito} 2017

Citation
Citation
{R{ü}nz, Buffier, and Agapito} 2018

Citation
Citation
{Xu, Li, Tzoumanikas, Bloesch, Davison, and Leutenegger} 2018

Citation
Citation
{Keller, Lefloch, Lambers, Izadi, Weyrich, and Kolb} 2013

Citation
Citation
{Pinheiro, Lin, Collobert, and Doll{á}r} 2016

Citation
Citation
{He, Gkioxari, Dollar, and Girshick} 2017

HACHIUMA, PIRCHHEIM ET AL.: DETECTFUSION 3

Moreover, MaskFusion, MID-Fusion, and Co-Fusion (with semantics) assume that ob-
jects can be detected using pre-trained categories, such as from MS COCO [7] or PASCAL
VOC [4]. Moving objects which do not belong to a trained category remain undetected
and are wrongly incorporated into the background map, resulting in reduced localization
accuracy. This restriction to learned categories is an important practical limitation, as real
environments are full of unknown (or undetectable) objects. Similar to Co-Fusion, we ex-
plicitly segment unknown dynamic regions using ICP residuals within our two-pass frame
tracking.

1.2 Contribution
Overall, there is currently no method which can perform instance segmentation at full frame
rate, nor is there a method which can handle all kinds of dynamic objects, including unde-
tected ones. In this paper, we present DetectFusion, a method that aims to fill these gaps
(Table 1). It employs instance segmentation in real-time (about 20 fps) on a single GPU. We
handle all kinds of dynamic objects, of both the known-detected and the unknown-undetected
variety. Therefore, we make the following contributions:

Instance segmentation at full frame rate By detecting and segmenting known object
instances in each incoming RGB-D frame in real-time (we reach about 20 fps including
tracking and mapping), we can create new object maps faster (just-in-time), update multiple
maps more accurately, and track all maps robustly. To the best of our knowledge, all previous
work uses Mask R-CNN (or one of its predecessors) for the detection and segmentation of
rigid and non-rigid objects. Mask R-CNN is a two-stage instance segmentation which is
impressively accurate (40mAP on the MS COCO dataset) and also reasonably fast (5Hz).
However, the single-stage detector YOLOv3 is much faster (30Hz), while still very accurate
in comparison (30mAP). For each detected instance, YOLOv3 only returns a 2D bounding
box and not a per-pixel mask. The key idea of our method is to intersect the box with a very
fast geometric segmentation algorithm [21], resulting in pixel-accurate instance segments at
a similar level of quality as delivered by Mask R-CNN. In summary, our combined detection
and segmentation method is must faster than Mask R-CNN, while being similarly accurate
– as we will demonstrate.

Handling of all dynamic objects In addition to known rigid and non-rigid objects, we also
aim to detect and segment all remaining unknown dynamic objects, including objects which
are undetectable (i.e., object categories on which the object detector has not been trained),
or has simply been spuriously undetected. This further improves tracking and mapping per-
formance substantially. Our detection and segmentation method is based on the analysis of
the geometric ICP error similar to Keller et al. [6] and Ruenz et al. [17]. In comparison, our
method is more efficient, while being similarly accurate.

In our experiments, we demonstrate the performance of our system on sequences from
the TUM RGB-D dataset [20] as well as self-captured sequences. For quantitative evaluation,
we first evaluate the camera tracking accuracy using dynamic image sequences. Second, we
evaluate the reconstruction accuracy. Third, we evaluate the computation timings of our
proposed system. Please also refer to our accompanying video1.

1https://www.youtube.com/watch?v=Ys3FXEP3A_4

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{{Tateno}, {Tombari}, and {Navab}} 2015

Citation
Citation
{Keller, Lefloch, Lambers, Izadi, Weyrich, and Kolb} 2013

Citation
Citation
{R{ü}nz and Agapito} 2017

Citation
Citation
{Sturm, Engelhard, Endres, Burgard, and Cremers} 2012

https://www.youtube.com/watch?v=Ys3FXEP3A_4

4 HACHIUMA, PIRCHHEIM ET AL.: DETECTFUSION

Figure 1: The system architecture of DetectFusion. The RGB-D frames of a monocular
camera are segmented into object instances, which are mapped into one or more semantic
maps (background and object maps). These maps can be tracked separately, allowing for
dynamically moving objects.

2 Method

The main components of our system are tracking, mapping, and instance segmentation (con-
sisting of object detection and segmentation) as depicted in Fig. 1. Our tracking and mapping
components take great inspiration from ElasticFusion [23] and MaskFusion [18]. In particu-
lar, our system also maintains dense surfel maps.

We reconstruct one or more maps, each consisting of dense geometry and object seman-
tics. Per default, we reconstruct a static map of the background. The background map only
contains static scene objects. In addition, we reconstruct a variable number of semantic ob-
ject maps which are created and updated when corresponding object instances are detected
and tracked.

We can track the monocular RGB-D camera with respect to all available maps individu-
ally. Per default, we estimate the camera pose with respect to the static map. In addition, we
can estimate separate camera poses for each object map which is visible in the current frame.
This allows the mapped objects to move dynamically and independently of each other.

For creating the semantic object maps, we employ an object detector which is trained
on a configurable (application-specific) set of semantic object categories, which we denote
as known objects. In contrast, we denote the complement set of untrained (and thus unde-
tectable) object categories as unknown objects.

Among the known objects, we furthermore distinguish between rigid and non-rigid ob-
ject categories. In particular, we focus on detecting, mapping and tracking rigid object in-
stances. Non-rigid object instances cannot be mapped and tracked by our system, and are
thus explicitly ignored to not disturb tracking and mapping.

Furthermore, we aim to detect and ignore any remaining dynamically moving objects.
These objects may include undetectable unknown objects (i.e., objects of untrained cate-
gories) as well as undetected known objects (i.e., false negatives of the detector). After
detection and segmentation, these objects are explicitly ignored in tracking and mapping.

Citation
Citation
{Whelan, Salas-Moreno, Glocker, Davison, and Leutenegger} 2016

Citation
Citation
{R{ü}nz, Buffier, and Agapito} 2018

HACHIUMA, PIRCHHEIM ET AL.: DETECTFUSION 5

Figure 2: Instance segmentation. In this example, the moving known object "car" is detected
and segmented and reconstructed into a separate object map. The object map is tracked
separately, allowing the object to move independently from the static background.

2.1 Instance segmentation
We detect and segment both rigid and non-rigid objects in the current frame and leverage
this knowledge for semantic mapping, as depicted in Fig. 2. Our method generates object
instance segmentation masks by combining 2D object detection with geometric segmenta-
tion. In contrast to SLAM methods based on Mask R-CNN [18, 24], which compute object
instance masks in two detect-then-segment stages, our method generates instance masks in a
single detect-while-segment stage, which can be executed in parallel on CPU and GPU and
is much faster.

Object Detection Detection with YOLOv3 [15, 16] results in a object bounding boxes
mask localizing semantically labeled object instances. YOLOv3 can detect a variable num-
ber of object categories depending on the training dataset. Two excellent options are MS
COCO [7] and PASCAL VOC [4], providing 81 and 20 object categories, respectively.

Geometric Segmentation We segment the 3D geometry of the current depth frame with
the algorithm of Tateno et al. [21]. This unsupervised incremental segmentation method
segments the depth frame by calculating normal and distance discontinuities in the neighbor-
hood of the pixel. The geometric segmentation results in a geometric edges mask indicating
depth discontinuities and a geometric normals mask indicating image regions with similar
normals, likely belonging to the same physical object. The geometric normals mask and
geometric edges mask are combined to also segment objects that have similar normals but
are located at different depth levels. Finally, we apply a connected component analysis algo-
rithm, delivering an geometric segments mask where each pixel is associated with a segment
label.

Object instance segmentation For each detected object, we intersect the object bounding
boxes mask and geometric segments mask, resulting in an object segments mask, which
refines the bounding box to a pixel-accurate semantic segmentation. For each bounding box,
we calculate the Intersection-over-Union (IoU) of each segment in the geometric segments
mask. We handle segments which have multiple overlapping bounding boxes by sorting the
bounding boxes according to their area in ascending order and assigning the object category

Citation
Citation
{R{ü}nz, Buffier, and Agapito} 2018

Citation
Citation
{Xu, Li, Tzoumanikas, Bloesch, Davison, and Leutenegger} 2018

Citation
Citation
{Redmon and Farhadi} 2017

Citation
Citation
{Redmon and Farhadi} 2018

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{{Tateno}, {Tombari}, and {Navab}} 2015

6 HACHIUMA, PIRCHHEIM ET AL.: DETECTFUSION

Figure 3: Motion segmentation. In this example, the moving unknown object "ship" can-
not be detected, but is segmented using its relative motion with respect to static map. The
segmented image regions are ignored in tracking and mapping.

to the segment recursively. If the IoU value is lower than a threshold, we do not assign the
object category to the segment. This results in a object segments mask, which we split into
a rigid object segments mask and a non-rigid object segments mask for later processing in
tracking and mapping.

2.2 Motion Segmentation
We detect and segment the remaining undetected and undetectable dynamic objects within
the current frame using ICP residual masks similar to Keller et al. [6] and Co-Fusion [17],
as depicted in Fig. 3. We start by registering the static reference frame (rendered from the
static map using the viewpoint of the previous frame) with the current frame to obtain an
ICP motion mask consisting of geometric residual values of ICP pixel correspondences.
High residual values highlight mismatches between the static map and the current frame,
indicating dynamic image regions.

The ICP motion mask is furthermore clustered into static regions (inliers) and dynamic
regions (outliers), resulting in a binary motion mask. We compute the binary motion mask
by applying K-means onto the residual values of ICP motion mask, receiving two clusters
and its corresponding centroid residual values. The cluster with the larger centroid residual
value is selected as the dynamic cluster. Dynamic regions resulting from different moving
objects are generally clustered correctly because in practice their peaks are sufficiently far
from the static peak in the residual histogram.

Since the measurable object movement between two successive frames may be small,
and, thus, the ICP motion mask often highlights only parts of the moving object, the binary
motion mask may not contain all moving object pixels. For this reason, we compute the IoU
between the binary motion mask and the geometric segments mask, resulting in a motion
segments mask that covers the entire moving object, or, at least, larger parts of it. In case
of no moving objects, the binary motion mask may contain spurious dynamic pixels located
on object edges that are removed by the intersection since the geometric segments mask
explicitly does not contain these edge pixels. The actual IoU computation is as same as for
instance segmentation (see Sec. 2.1).

Citation
Citation
{Keller, Lefloch, Lambers, Izadi, Weyrich, and Kolb} 2013

Citation
Citation
{R{ü}nz and Agapito} 2017

HACHIUMA, PIRCHHEIM ET AL.: DETECTFUSION 7

2.3 Tracking

We track the camera with respect to all maps which are visible in the current frame. For each
visible map, we create a reference frame using the camera pose of the previous frame. Each
reference frame is aligned with the current frame via a method similar to ElasticFusion [23].
Given the 6DoF camera pose of the previous frame, we iteratively minimize a cost func-
tion consisting of photometric and geometric error terms over the unknown relative 6DoF
transformation. We optimize with a Gauss-Newton non-linear least-squares algorithm on a
three-level coarse-to-fine image pyramid.

We perform camera tracking in two stages. In the first stage, we align the current frame
with reference frames rendered from both the static map and all visible object maps. In the
second stage, we refine the camera pose of the static map by leveraging calculations between
the first and the second stage.

In particular, we calculate an invalid mask which marks dynamic objects which have
previously been detected in the current frame, including (1) image regions of known non-
rigid objects (see Sec. 2.1) and (2) image regions of unknown dynamic objects (see Sec. 2.2).
I.e., the invalid mask is the union of motion segments mask and non-rigid object segments
mask, and marks outlier correspondences between current frame and reference frame of
the static map stemming from dynamic objects. We omit these regions during tracking to
improve the camera pose estimate in the second stage.

2.4 Mapping

We reconstruct and maintain multiple surfel maps similar to ElasticFusion [23]. In particular,
we adopt their strategies for creating and updating the surfel maps, including the rules for
initializing and updating the attributes (i.e., position, normal, color, radius, weight) and the
state (i.e., active, inactive) of individual surfels.

Our multi-map reconstruction method is similar to MaskFusion [18]. We fuse image
pixels of the current frame into their corresponding maps. We project the visible object map
onto the current frame using the estimated camera pose, resulting in a map mask. By inter-
secting each map mask with the rigid object segments mask, we establish matches between
object maps and the detected rigid objects.

We distinguish the following cases when fusing image pixels with our maps: For each
map-object match, we update and potentially extend the object map with the corresponding
object pixels. For each unmatched object, we create a new object map, resulting in an initial
set of surfels. For each unmatched map, we update and potentially shrink the corresponding
object map. Finally, we remove pixels identified by the invalid mask (see Sec. 2.3) and fuse
the remaining pixels into the static map.

3 Evaluation

We conducted an extensive set of experiments to evaluate our system, including quantitative
and qualitative results on tracking, reconstruction, segmentation and runtime performance,
which we generated using synthetic and real, public and self-made datasets. Our experi-
ments were performed on a computer equipped with an Intel Core i7-6950X 3.0GHz CPU, a
GeForce GTX 1080Ti GPU, 64GB RAM, and running Ubuntu 16.04. YOLOv3 was trained

Citation
Citation
{Whelan, Salas-Moreno, Glocker, Davison, and Leutenegger} 2016

Citation
Citation
{Whelan, Salas-Moreno, Glocker, Davison, and Leutenegger} 2016

Citation
Citation
{R{ü}nz, Buffier, and Agapito} 2018

8 HACHIUMA, PIRCHHEIM ET AL.: DETECTFUSION

Setting Sequence ATE RMSE (cm)
EF SF CF MF DF

Slightly
Dynamic

f3s_static 0.9 1.3 1.1 2.1 1.5
f3s_xyz 2.6 4.0 2.7 3.1 5.2

f3s_halfsphere 13.8 4.0 3.6 5.2 4.1

Highly
Dynamic

f3w_static 6.2 1.4 55.1 3.5 3.6
f3w_xyz 21.6 12.7 69.6 10.4 8.5

f3w_halfsphere 20.9 39.1 80.3 10.6 7.2

Table 2: Comparison of Absolute Trajectory Error (lower is better) on TUM-RGB-D dataset.

on the MS COCO dataset using the default weights2.
We tested our method with our own sequences which we recorded using a Kinect v1 with

640×480 resolution. For reasons of limited paper space, we would like to refer our readers
to the accompanying video for these results.

3.1 Tracking performance
We evaluated the tracking accuracy of our system and compared with related systems on
the widely used TUM RGB-D SLAM dataset [20]. This dataset provides six image se-
quences showing dynamically changing environments, which can be further divided into
three slightly dynamic (fr3/sitting) and three highly dynamic (fr3/walking) sequences, each
having different camera motion trajectories (static, xyz: up-down-left-right, spherical).

We compare our method with several state-of-the-art dynamic and static SLAM systems
(see Table 1): ElasticFusion (EF) [23], StaticFusion (SF) [19], Co-Fusion (CF) [17], Mask-
Fusion (MF) [18] and DetectFusion (DF, ours). We focus on dense SLAM systems which
are known to run in real-time, and thus omitted non-real-time systems such as MID-Fusion,
and sparse systems such as DynaSLAM [1].

Table 2 summarizes the Absolute Trajectory Error (ATE) when tracking the camera with
respect to the static maps reconstructed by the respective systems. Overall, our system de-
livers results that are comparable to previous work or better.

On the highly dynamic sequences fr3/walking_xyz and fr3/walking_halfsphere, our sys-
tem performs best, although not by a large margin. We assume that our unique combination
of instance and motion segmentation makes the difference. In contrast to related systems, our
system can not only detect and segment known rigid and non-rigid object instances, but also
segment dynamic image regions which are covered by unknown (i.e., undetectable or spu-
riously undetected) objects. Since we either explicitly ignore or reconstruct the segmented
objects into separate object maps, the reconstruction of our static map contains less outliers
and thus allows for more accurate camera tracking.

3.2 Segmentation and reconstruction performance
We conducted a comparison of the instance segmentation and reconstruction performance
between our system and the closely related SLAM systems Co-Fusion [17] and MaskFu-
sion [18], using a synthesized image sequence (room4-noise) from the Co-Fusion dataset3.

2https://pjreddie.com/darknet/yolo/
3https://github.com/martinruenz/co-fusion

Citation
Citation
{Sturm, Engelhard, Endres, Burgard, and Cremers} 2012

Citation
Citation
{Whelan, Salas-Moreno, Glocker, Davison, and Leutenegger} 2016

Citation
Citation
{{Scona}, {Jaimez}, {Petillot}, {Fallon}, and {Cremers}} 2018

Citation
Citation
{R{ü}nz and Agapito} 2017

Citation
Citation
{R{ü}nz, Buffier, and Agapito} 2018

Citation
Citation
{Bescos, Facil, Civera, and Neira} 2018

Citation
Citation
{R{ü}nz and Agapito} 2017

Citation
Citation
{R{ü}nz, Buffier, and Agapito} 2018

https://pjreddie.com/darknet/yolo/
https://github.com/martinruenz/co-fusion

HACHIUMA, PIRCHHEIM ET AL.: DETECTFUSION 9

(a) Ground truth (b) Co-Fusion (CF) (b) MaskFusion (MF) (c) Ours (DF)

Figure 4: Ground truth model and reconstructed SLAM object maps.

Metric Co-Fusion (CF) MaskFusion (MF) Ours (DF)
Accuracy 0.792 0.896 0.810

Completeness 0.525 0.457 0.591

Table 3: Comparison between ground truth model and SLAM object maps on completeness
and accuracy ratios in the range [0,1] (higher values are better).

This image sequence contains a moving car object to which we also have the corresponding
ground truth 3D model available. Each SLAM system received the image sequence as input,
delivering a set of segmented and reconstructed object maps. All systems delivered an object
map of the desired car, depicted in Fig. 4.

For the comparison of the SLAM maps with the ground truth 3D model, we calculated
completeness and accuracy ratios. Table 3 shows the results. While MaskFusion recon-
structed the most accurate map, ours reconstructed the most complete map of the car object.

3.3 Runtime performance

Table 4 shows the average time spent on each processing stage of our system. The numbers
have been measured using RGB and depth input images with 640× 480 resolution. Mask-
Fusion had an average frame time of 33ms (30fps) using two cards with Nvidia Titan X
GPU, while performing segmentation only every 12th frame. DetectFusion achieved an av-
erage frame time of 46ms (22fps) with one 1080 Ti, while performing segmentation in every
frame. Note that this is possible because geometric segmentation and object detection do not
depend on each other, allowing to run these processing steps in parallel.

Component Runtime [ms]
Initial Tracking 3.80 / model
Geometric segmentation ∗ 6.16
Object Detection ∗ 19.1
Motion Segmentation 2.72
Object Mask Generation 0.57
Camera Pose refinement 6.30
Mapping 2.05 / model
Total 46.1 + 5.16 / model

Table 4: Average time (ms) spent on each processing stage of our system (steps marked with
∗ are processed simultaneously).

10 HACHIUMA, PIRCHHEIM ET AL.: DETECTFUSION

4 Discussion and Conclusions
In this paper, we presented an efficient approach for object-level dynamic SLAM. It robustly
tracks the camera pose in a highly dynamic environment and continuously estimates seman-
tics and object geometry. Experimental results show that our method outperforms previous
work in terms of camera tracking accuracy in highly dynamic scenes, while being computa-
tionally much lighter than comparable approaches.

There are several important steps left for future work. First, better object detection would
help both tracking and mapping. We inherit not only the impressive strengths, but also the
limitations of YOLOv3. Even if properly trained and configured, YOLOv3 is not always
able to correctly detect the known objects in each frame. We found in our experiments that
cluttered scenes and the presence of occluded objects are particularly problematic. How-
ever, since YOLOv3 is known to have almost the same accuracy compared to Mask R-CNN,
these limitations similarly affect the related SLAM systems. Our system also provides some
robustness to occasional false (i.e., missing or wrong) detections. Missing detections (i.e.,
false negatives) are either, in case of dynamic objects, gracefully ignored via motion seg-
mentation, or, in case of static objects, mitigated by the built-in robustness of the mapping
and tracking processes. Wrong detections (i.e., false positives) may result in redundant or
duplicate object maps that our system currently cannot detect, delete or merge.

Moreover, intersection of object bounding boxes with the geometric segmentation is not
always robust. Our current heuristic greedily assigns segments to instances and sometimes
delivers wrong assignments or fails, in particular, if complex occlusion occurs. In addition,
detection and segmentation of small and non-convex objects, such as hands or arms, can
be challenging. While we favourably compared our system with SLAM based on Mask R-
CNN, a direct comparison of our instance segmentation method with Mask R-CNN remains
to be done.

With faster computing, it may become easier to integrate per-pixel semantic segmenta-
tion into SLAM systems at real-time rates. Nonetheless, our approach of combining fast
detection with fast geometric segmentation will remain relevant, since it can quickly and in-
expensively uncover the majority of dynamic object configurations. This can help to concen-
trate the computational power required for instance segmentation (on top of already obtained
detection results) on the more difficult parts of the scene.

Acknowledgements This work was enabled by the Japan Science and Technology Agency
(JST) under grant CREST-JPMJCR1683, and the Austrian Research Promotion Agency
(FFG) under grant RSA-859208 (MATAHARI). We would like to thank the reviewers for
their valuable comments.

References
[1] Berta Bescos, Jose M. Facil, Javier Civera, and Jose Neira. DynaSLAM: Tracking,

Mapping, and Inpainting in Dynamic Scenes. IEEE Robotics and Automation Letters,
3(4):4076–4083, Oct. 2018.

[2] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan Fanello,
Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, David Kim, Jonathan Tay-
lor, Pushmeet Kohli, Vladimir Tankovich, and Shahram Izadi. Fusion4D: Real-time

HACHIUMA, PIRCHHEIM ET AL.: DETECTFUSION 11

Performance Capture of Challenging Scenes. ACM Transaction on Graphics, 35(4):
114:1–114:13, 2016.

[3] Mingsong Dou, Philip Davidson, Sean Ryan Fanello, Sameh Khamis, Adarsh Kowdle,
Christoph Rhemann, Vladimir Tankovich, and Shahram Izadi. Motion2Fusion: Real-
time Volumetric Performance Capture. ACM Transaction on Graphics, 36(6):246:1–
246:16, 2017.

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The Pascal
Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 88
(2):303–338, Jun. 2010.

[5] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask R-CNN. In
IEEE International Conference on Computer Vision, pages 2980–2988, Oct. 2017.

[6] Maik Keller, Damien Lefloch, Martin Lambers, Shahram Izadi, Tim Weyrich, and An-
dreas Kolb. Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fu-
sion. In IEEE International Conference on 3D Vision, pages 1–8, Jun. 2013.

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common Objects in
Context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors,
European Conference on Computer Vision, pages 740–755, 2014.

[8] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger. Fusion++: Vol-
umetric Object-Level SLAM. In International Conference on 3D Vision, pages 32–41,
Sep. 2018.

[9] John McCormac, Ankur Handa, Andrew J. Davison, and Stefan Leutenegger. Seman-
ticfusion: Dense 3d semantic mapping with convolutional neural networks. IEEE In-
ternational Conference on Robotics and Automation, pages 4628–4635, 2017.

[10] Raul Mur-Artal and Juan D. Tardos. ORB-SLAM2: An Open-Source SLAM System
for Monocular, Stereo, and RGB-D Cameras. IEEE Transactions on Robotics, (5):
1255–1262, Oct. 2017.

[11] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi,
J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion: Real-time dense surface
mapping and tracking. In IEEE International Symposium on Mixed and Augmented
Reality, pages 127–136, Oct. 2011.

[12] Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison. DTAM: Dense
tracking and mapping in real-time. In IEEE International Conference on Computer
Vision, pages 2320–2327, Nov. 2011.

[13] Richard A. Newcombe, Dieter Fox, and Steven M. Seitz. DynamicFusion: Recon-
struction and tracking of non-rigid scenes in real-time. IEEE Conference on Computer
Vision and Pattern Recognition, pages 343–352, 2015.

[14] Pedro O. Pinheiro, Tsung-Yi Lin, Ronan Collobert, and Piotr Dollár. Learning to refine
object segments. In European Conference on Computer Vision, pages 75–91. Springer
International Publishing, 2016.

12 HACHIUMA, PIRCHHEIM ET AL.: DETECTFUSION

[15] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. IEEE Conference
on Computer Vision and Pattern Recognition, pages 6517–6525, 2017.

[16] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. CoRR,
abs/1804.02767, 2018.

[17] Martin Rünz and Lourdes Agapito. Co-Fusion: Real-time Segmentation, Tracking
and Fusion of Multiple Objects. In IEEE International Conference on Robotics and
Automation, pages 4471–4478, May 2017.

[18] Martin Rünz, Maud Buffier, and Lourdes Agapito. MaskFusion: Real-Time Recogni-
tion, Tracking and Reconstruction of Multiple Moving Objects. In IEEE International
Symposium on Mixed and Augmented Reality, pages 10–20, Oct. 2018.

[19] R. Scona, M. Jaimez, Y. R. Petillot, M. Fallon, and D. Cremers. StaticFusion: Back-
ground Reconstruction for Dense RGB-D SLAM in Dynamic Environments. In IEEE
International Conference on Robotics and Automation, pages 1–9, May 2018.

[20] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A Benchmark for
the Evaluation of RGB-D SLAM Systems. In IEEE/RSJ International Conference on
Intelligent Robot Systems, pages 573–580, Oct. 2012.

[21] K. Tateno, F. Tombari, and N. Navab. Real-time and scalable incremental segmentation
on dense SLAM. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 4465–4472, Sep. 2015.

[22] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. H. J. Kelly, and S. Leutenegger. Ef-
ficient Octree-Based Volumetric SLAM Supporting Signed-Distance and Occupancy
Mapping. IEEE Robotics and Automation Letters, 3(2):1144–1151, Apr. 2018.

[23] Thomas Whelan, Renato F Salas-Moreno, Ben Glocker, Andrew J Davison, and Stefan
Leutenegger. ElasticFusion: Real-time dense SLAM and light source estimation. The
International Journal of Robotics Research, 35(14):1697–1716, 2016.

[24] Binbin Xu, Wenbin Li, Dimos Tzoumanikas, Michael Bloesch, Andrew J. Davison, and
Stefan Leutenegger. MID-Fusion: Octree-based Object-Level Multi-Instance Dynamic
SLAM. CoRR, abs/1812.07976, 2018.

