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Abstract. Superquadrics are one of the ideal shape representations for
adapting various kinds of primitive shapes with a single equation. This
paper revisits the task of representing a 3D human body with multiple
superquadrics. As a single superquadric surface can only represent sym-
metric primitive shapes, we present a method that segments the human
body into body parts to estimate their superquadric parameters. More-
over, we propose a novel initial parameter estimation method by using
3D skeleton joints. The results show that superquadric parameters are
estimated, which represent human body parts volumetrically.
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1 Introduction

The idea of automatically sensing and discovering information about the 3D
human body has been of interest in several areas of computer vision for many
years. For example, human activity recognition [17] and pose estimation [5,11]
are at the base of many augmented/virtual reality and robotic applications. The
extracted information about the human body can be represented in many ways,
such as cylinders [13], skeletons [10], and joint skeletons [5].

Recently, superquadric [4] has been revisited to represent objects effi-
ciently and comprehensively [15]. Superquadrics are ideal shape representa-
tions for adapting various primitive shapes with a single equation. Applying the

Fig. 1. The various superquadric shapes according to ε1 and ε2.
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superquadric to an object enables the object to be expressed by various prim-
itive shapes, such as cuboids, cylinders, and spheres with several parameters
in the equation. Figure 1 shows examples of various superquadric surfaces with
different shape parameters (ε1, ε2). The superquadric parameters of real-world
objects are estimated from 3D point cloud of them [18]. An equation obtained
by substituting the 3D point cloud of an object into superquadric representa-
tion is regarded as a non-linear least squares problem, and the parameters are
estimated using the Levenberg-Marquardt (LM) algorithm.

In the 1990s, superquadrics were employed to represent humans volumet-
rically [9]. Although a single superquadric can only represent the symmetric
primitive shape, a human shape is represented with multiple superquadrics by
approximating each body part as a symmetric primitive shape. Previous work [9]
handled this task as a toy problem, and depth information was obtained from
a structured light range scanner, which required a difficult setup to capture.
Afanasyev et al. [2] proposed a method to estimate the body pose from a depth
image, representing body parts with superquadrics. However, as they aimed to
only estimate the pose and they fixed the superquadric shape and scale param-
eters. Paschalidou et al. [15] estimated multiple superquadric parameters by a
convolutional neural network from the 3D mesh. Furthermore, Sundaresan et al.
[19] proposed a method to estimate scale and pose parameters of superquadrics
from 3D voxel data. Unlike the previous methods [15,19], we present a method
which estimates superquadric parameters from a single RGB and 2.5 D depth
image.

This paper revisits the task of representing the 3D human body with multiple
superquadrics. We present a method to estimate multiple superquadrics that
represent the 3D human body from a single RGB-D image (Fig. 2). Our method
consists of two steps: segmenting the RGB-D image into 3D body parts and
estimating each superquadric parameters from each segmented point cloud. We
propose the initial parameter estimation that uses 3D human skeleton joints.
In the experiment, we recorded three sequence with Kinect v.2 to verify the
effectiveness of our proposed method. We employ the Chamfer distance as the
evaluation metric. We confirmed that effectiveness of the proposed superquadric
initial parameter estimation method.

2 Superquadrics

The way to define a superquadric in an superquadric-centered coordinate system
is the inside-outside function with a scale parameter (sx, sy, sz) and a shape
parameter (ε1, ε2):

F (x, y, z,Λ)=
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) 2
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where Λ is a tuple as (sx, sy, sz, ε1, ε2). Parameters sx, sy, and sz are scale
parameters that define the superquadric size at the x, y, and z coordinates,
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Fig. 2. Volumetric representation of human body parts using superquadrics. We take
the input of a single RGB and depth image (a). The output is multiple superquadrics
that represent the segmented human body parts (b). As each segmented part is repre-
sented by superquadrics, the hidden area’s shape can also be recovered as volumetric
representation (c).

respectively. Parameters ε1, ε2 are shape representation parameters that express
squareness along the z axis and the x-y plane. Also, a point which lies on a
superquadric surface can be defined below:

x(η, ω) =

⎡
⎣ sxcosε1(η)cosε2(ω)

sycosε1(η)sinε2(ω)
szsin

ε1(η)

⎤
⎦ . (2)

−π/2 ≤ η ≤ π/2,−π ≤ ω ≤ π.

As The surface of superquadrics is located in the original coordinate system,
the superquadrics can be expressed in a generic coordinate system by adding six
further variables, representing the six superquadric pose, with a total of eleven
independent variables, i.e. q ∈ R

11.

3 Method

In this paper, we follow the representation of the human body part defined by
Krivic et al. ’s [9], which is separated into 10 parts: head (1), torso (2), right/left
upper/lower arm (3–6), right/left thigh/shank (7–10).

Our method consists of two steps to estimate superquadric parameters of each
human body part. Each superquadric parameter is estimated from point cloud
of each point cloud of human body part. Therefore, first, we segment the 3D
point cloud which is obtained from RGB-D sensor into each body part. Second,
we estimate superquadric parameters from each segmented point cloud.
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Fig. 3. The flow of human body part segmentation. The color code is visualized at the
right side of the image for Figure (c) and (e). (Color figure online)

3.1 Body Part Segmentation

To extract the 3D point cloud of human body parts, we combine the human body
semantic segmentation and 3D human joint detection. The flow of human body
part segmentation is shown in Fig. 3. From an RGB image, we apply seman-
tic segmentation to label human body part to each pixel. We employ Light-
Weight RefineNet [14] which shows high accuracy on the PASCAL Person-Part
dataset [6] while keeping the computational efficiency. In the PASCAL Person-
Part dataset, there are seven categories of labels: head, torso, upper arm, lower
arm, thigh, and shank. Figure 3(c) shows the result of semantic segmentation.
Note that left/right limbs(lower arm, upper arm, thigh and shank) are not seg-
mented each other.

Therefore, we use 3D skeleton joints to segment left/right limbs. The skele-
ton’s 3D positions are estimated using the method proposed by Shotton et al.
[16]. Figure 3(d) shows the result of 3D skeleton joints estimation. The 3D skele-
ton joints are projected onto the depth image and colored in cyan. As the RGB
and depth images’ coordinate systems are not aligned, we transform the seman-
tically labeled image to the depth coordinate using the intrinsic and extrinsic
parameter of the RGB-D sensor.

For each 3D point which is labeled as a limb, we calculate the Euclidean
distance between the point and each 3D skeleton joints. If the nearest joint
belongs to a left limb, the 3D point is labeled a left body part. For example,
if the nearest joint is left shoulder, the point is labeled as a left upper arm.
Figure 3(e) shows the result of human body part segmentation. Compared to
Fig. 3(c), left limbs and right limbs are segmented each other.

3.2 Superquadric Parameter Estimation

The superquadric parameter is estimated from the extracted point cloud of
each body part. The minimization of the algebraic distance from points to the
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superquadric surface can be solved by defining a non-linear least-squares mini-
mization problem:

min
q

K∑
k=0

(
√

sxsysz(F ε1(pk; q) − 1))2, (3)

where K denotes number of 3D points in the point cloud, pk denotes each 3D
points in the point cloud, and q is superquadric parameters which fits the input
3D point cloud. (F (TrΦ(pi);Λ) − 1)2 imposes the point to superquadric surface
distance minimization, where the term √

sxsysz is proportional to superquadric
volume, compensates for the fact that the previous equation is biased toward
larger superquadric surfaces. We employ Levenberg-Marquardt [12] algorithm
to minimize the above equation.

It is known that the optimization function (Eq. 3) will be numerically unsta-
ble [20] when ε1, ε2 are less than 0.1. Moreover, the superquadric will have con-
cavities when ε1, ε2 > 2.0. Therefore, we employ the constraints when minimizing
the function in Eq. 3 for the shape parameters: 0.1 < ε1, ε2 < 2.0 and for the
scale parameters: s1, s2, s3 > 0.0.

As the minimization function is not a convex function, the initial parameters
determine which local minimum the minimization converges to. Most of the
works [7,8] which estimate superquadric parameters employ the initial parameter
estimation method proposed by Solina et al. [18]. Unlike the estimation method
in the previous work, we propose a novel approach to estimate initial parameters
using 3D skeleton joints. We denote the previous initial parameter estimation
method as the baseline method.

Initial Translation Parameter. The baseline method estimated initial trans-
lation parameters by calculating the centroid from all 3D points, and the centroid
is set to the initial translation parameter. However, as the point cloud is cap-
tured from a single viewpoint, the centroid point is drifted to the direction of
the origin of the coordinate system. On the other hand, the model proposed
by Shotton et al. [16] is trained to estimate the 3D skeleton joints from human
meshes so that the estimated joints do not drift even if from a single viewpoint.
Therefore, we take the average of each body part’s 3D joint skeletons in order to
set the initial translation parameter. For example, we take the average of the 3D
coordinate of joints belonging to the torso to estimate its translation parameter.

Initial Rotation Parameter. The baseline method calculated the covariance
matrix from all 3D points and the eigenvectors of the matrix are set to the initial
rotation parameter. We set the initial rotation parameter which aligns the z-axis
of superquadric surface to be parallel to the vector of two connected 3D joints
in each body part.

Initial Scale and Shape Parameter. We compute the covariance matrix of
each body part’s 3D point cloud, and the three eigenvalues of the matrix are set
to initial scale parameters. For initial shape parameters, we set ε1 = 1.0, ε2 = 1.0
for the head and ε1 = 0.1, ε2 = 1.0 for other body parts that approximates the
each body part.
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Table 1. The average Chamfer distance [cm] for each sequence (seq1, seq2, seq3). Lower
is better.

seq1 seq2 seq3 Average

Baseline 1.735 1.671 1.535 1.647

Proposed 1.105 1.533 1.349 1.329

4 Experiment

We recorded three sequences using Kinect v.2. We denote three sequences as
seq1, seq2 and seq3. There are at total 125, 95, and 53 frames in each sequence,
respectively.

4.1 Evaluation Metric

We employed a Chamfer distance metric to evaluate if the estimated
superquadric surfaces represented the original point cloud. Chamfer distance
calculates the distances between given two set of point clouds S1, S2:

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

||x − y||22 +
∑
y∈S2

min
x∈S1

||x − y||22. (4)

The algorithm of the Chamfer distance finds the nearest neighbor points in one
set and sums the squared distances up. In this experiment, one point set is 3D
points that are labeled with body parts, while the other is 3D points sampled
from the estimated superquadric surface.

By sampling 3D points from a superquadric surface according to Eq. 5, the
regions which exhibit high curvature are emphasized, shown in Fig. 4 (a). For
an unbiased sample distribution we need to apply equidistant sampling using
spherical angles as introduced by Bardinet et al. [3],

x̂(η, ω) =

⎡
⎣sxρ cos(η) cos(ω)

syρ cos(η) sin(ω)
szρ sin(η)

⎤
⎦ , (5)

where

ρ =
((

| cos ηcosω| 2
ε2 + | sin ηcosω| 2

ε2

) ε2
ε1 + | sin η| 2

ε1

)−ε1
2

.

Figure 4(b) shows the sampling result by Eq. 5. The 3D points are uniformly
sampled from superquadric surface.

4.2 Qualitative Results

To evaluate the effectiveness of our initial parameter estimation method, we
compared the estimation results with the previous work [18] (baseline). This

hs@keio.jp



58 R. Hachiuma and H. Saito

Fig. 4. Sampled points from superquadric surface by Eqs. 1 and 5. The left figure is
sampled point cloud with the Eq. 1, and the right figure is the sampled point cloud
with Eq. 5. The Superquadric parameter is set to (ε1 = 0.1, ε2 = 0.1, s1 = 1.0, s2 =
1.0, s3 = 1.0).

seq1 seq2 seq3

Fig. 5. Chamfer distance between estimated superquadric surface and the 3D points
which labeled as the human of three sequences. Lower is better.

previous method has been widely used for estimating the initial parameter esti-
mation [1,8]. Figure 6 shows the superquadric estimation of three frames at three
sequences. It demonstrates that our proposed method successfully estimated
multiple superquadric parameters which approximate the point cloud of each
body part. At the second row, superquadric parameters are estimated even if
the person raised the left shank, and the proposed method estimated accurate
superquadric pose parameters compared to the baseline method. Moreover, at
the sixth row, we can verify the effectiveness of our proposed method with the
superquadric parameters of the left upper arm and the right shank.

4.3 Quantitative Results

The averaged Chamfer distance across the entire frame in each sequence is sum-
marized in Table 1. For example in seq1, 1.74 cm for the baseline method and
1.11cm for our proposed method. Figure 5 shows the Chamfer distance of each
frame in each sequence. From the figure, we can verify that our novel initial
parameter estimation method found more optimal parameters than the previous
method [18].
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RGB + colored
semantic mask

Depth + 2D
projected

skeleton joints
(cyan)

Segmented point
cloud
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Fig. 6. The result of superquadric parameter estimation by the baseline method and
the proposed method at three frames in each sequence. The first row to the third are
the frames from seq1, the fourth row to the sixth are the frames from seq2 and the
seventh row to the nineth are the frames from seq3.
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5 Conclusion

To revisit the task of representing the human shape volumetrically with mul-
tiple superquadrics, we presented a method to estimate superquadric parame-
ters that represent the 3D human body. Moreover, we proposed a novel initial
parameter estimation method that uses 3D skeleton joints. The results showed
that our method successfully represented the 3D human body with multiple
superquadrics. Additionally, we compared our initial estimation method with
the previous method and verified its effectiveness by comparing the Chamfer
distance between the estimated superquadric surfaces and the point cloud of
humans.

In the future, we will develop applications that leverage the three big advan-
tages of superquadrics. First, unlike the 3D skeleton joint representation, the
superquadric representation contains not only the 3D position but also the vol-
umetric information of the person. Mehta et al. [11] showed the virtual reality
application of 3D pose estimation. In the application, the estimated 3D pose is
used to provide the pose of a virtual avatar. By using superquadric representa-
tion, the avatar refers not only the pose of the user but also the shape of the
user. Second, as superquadric scale parameters directly represent the size of each
body part, the size of a human body can be easily measured from a single view
and used to virtually fit or customize clothes. Finally, as the shape of the hidden
area is recovered using superquadrics, the recovered information can be used to
generate free viewpoint images.
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