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 Abstract—By using photometric stereo it is possible to 

compute the normal of the surfaces of a scene. This paper 

applied photometric stereo using a moving camera. This 

implementation is meant for dark environment enlightened by 

the torchlight of the camera. Since the photometric stereo is 

applied while the camera is moving, it requires a camera pose 

estimation. This estimation is performed thanks to ORB 

features used in a similar way as ORB SLAM algorithm. A 

first estimation of the depth map is provided by stereo 

matching.  
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I. INTRODUCTION 

 
 AR technologies such as ARCore usually focus on an 

estimation of the plane surfaces, avoiding to fully 

reconstruct the scene they are applied in. In addition, they 

perform poorly with close-up scenes and with poor light 

conditions. Consequently, some AR concepts are still far 

from being implementable because they require round 

surfaces or dark environment. For example, implementing 

an AR guide to exit a building after a power outage is a 

challenging implementation with the current technologies.  

 

Our system uses photometric stereo to generate an accurate 

estimation of the normal vectors and the albedo of the 

surfaces. Usually, photometric stereo is fixed and the light 

source is moving. However, it is possible to apply 

photometric stereo even if the camera is moving. A simple 

way to do so is to move the light and the camera 

simultaneously as in [1]. This method suits perfectly with 

the usage of the camera and the torchlight of a smartphone 

which moves altogether. The challenge consists in 

estimating the camera pose (and consequently the torchlight 

pose) as the user is moving. This can be done thanks to 

SLAM algorithm. In this research, the camera pose is 

obtained thanks to a key points-oriented approach similar to 

ORB SLAM [2]. By using stereo matching, it is possible to 

get a first estimation of the depth of the scene [3]. Finally, 

with the camera/light poses and an initial depth estimation, 

it is possible to apply photometric stereo to finally get an 

accurate estimation of the normal and the albedo of the 

scene. The full pipeline is summed up in Fig. 1.  

 

Our contribution consists in (1) the creation of an 

algorithm combining SLAM and photometric stereo, (2) the 

adaptation of photometric stereo for a moving user and (3) a 

reconstruction technique that can be applied in dark 

environment.  

 

A. Previous works 

 
SLAM technologies are usually used for odometry and 

can be used with a monocular camera and provide really 

interesting results as long as some constraint to get a right 

acquisition are respected. With images simply taken by a 

moving camera, it is possible to get the camera pose in real-

time. Various SLAM algorithms exist; some are dense 

(depth-map oriented) as in [4] and others are sparse (key-

point oriented) as in [2]. In our case, we use a sparse 

approach inspired by ORB SLAM. The reason is to get a 

fast process that is robust to various camera movement. 

Fig. 1. Key steps of our pipeline. 



Photometric stereo is an approved technology that uses a 

pixel-wise approach to reconstruct the normal and the 

albedo of the technology. Based on the variation of the light 

intensity, it performs well when the good conditions are 

respected (fixed camera, moving light, fixed small object, 

dark light conditions). Here, we would like to use the most 

constraint-less approach for photometric stereo. We want to 

apply photometric stereo with a moving camera. To do so, 

we need a large variation of camera movement which 

explains why we require the robustness of ORB features 

(see [5]). 

 

Finally, since we require an initial depth estimation, we 

use another often-used technology which is stereo matching 

[3]. By using two images of the same scene slightly 

translated, it is possible to compute easily a depth map of 

the scene. 

II. PROPOSED METHOD 

A. Image acquisition 

The idea is to acquire the data as if we are using a 

smartphone with the torchlight turned on. The camera is 

moving around the objects with a large variation of 

movement to have a large panel of light orientation. We 

need a large number of frames to get an accurate result with 

the photometric stereo. In our experiments, we have the 

control of the colorimetric and compressing settings. The 

idea is to get images that can directly feed our ORB SLAM 

based algorithm without requiring additional preprocessing 

of the images. 

 

B. ORB SLAM based-algorithm 

The algorithm extract ORB features in all images to 

find a set of correspondences between all the images as 

explain in [2]. Among all the images, a series of key frames 

based on the number of correspondence is found. To 

compute the camera pose, the algorithm uses the 

homographies between the images and the fundamental 

matrixes. If the scene is rather planar, the homography is 

used. On the other hand, if the scene is non-planar and has a 

low-parallax, the fundamental matrix is used. The process is 

able to work in real-time. A set of Key Frames is obtained 

and for each of them, we are able to get the camera pose 

between world and camera coordinate system ( , ) 

and vice-versa ( , ). We also have a sparse 

reconstruction of the scene in 3D and a mapping of those 

points with the pixels of each Key Frame. Note that our 

reconstruction is unscaled. 

 

C. Stereo Matching 

With this camera pose, we are able to get the rotation 

and the translation  between an image 1 and an 

image 2 : 

 

                (1) 

  (2) 

 

This is then used to apply stereo matching. After 

rectification of the images, we can get a disparity map and 

consequently a depth map estimation. We decide to apply 

stereo matching for each Key Frame as a left image and a 

non-Key Frame as a right image. After rectification of the 

images, we apply a semi-dense block matching technique to 

get a disparity map. From this disparity map, we are able to 

get a depth map and to project our image in 3D. The depth 

map is used as a first estimation for the photometric stereo. 

The 3D projection is used for correspondences. We get a 

series of 3D point clouds for each Key Frames. By 

projecting everything in the world coordinate system, we are 

able to get a dense point cloud with overlapping points. For 

each point we store the following data: the image index 

where it was extracted from and the intensity of the pixel 

used for this point. By using overlapping points, we get a 

series of pixel intensities for each Key Points. As we will 

explain in II. D, if we get at least 4 overlapping, we can 

apply photometric stereo. Overlapping is estimated based on 

the Euclidian norm. To refine the result, we also use the 2D 

projections to check if the overlapping is preserved. 

Ultimately, we only keep the key points that corresponds to 

fair correspondences. We use the epipolar constraint to 

check if the points are corresponding. The fundamental 

Matrix is computed using the intrinsic and extrinsic 

parameters. We ensured a rank two to this matrix by using a 

SVD decomposition to set the last Eigen Values to 0. 

 

D. Photometric Stereo 

To represent this 3D reconstruction, we create a list of 

3D points such as each member can be represented as X, Y, 

Z, V where X, Y, Z are the coordinates of the 3D points and 

V a vector containing a series of tuples. Each tuple contains 

the information of different images that will be used for 

photometric stereo. The representation of a tuple is (i, p) 

where i is the index of the image used to compute this 3D 

point and p the corresponding pixel intensity. If the length 

of V is superior to 4, we can apply photometric stereo. The 

classic equation used for photometric stereo with lambertian 

surfaces is: 

 

(3) 

 
where  is the intensity of pixel i,  the albedo of i,  the 

direction of the light vector of the torchlight toward i,  the 

normal vector in the world coordinate system of i and  the 

ambient light as received by i. Since the camera is moving, 

we need to compute for each pixel and each camera position 

a different light vector as followed: 

 

 (4) 

 
where  is a first estimation of the normal of the 

corresponding pixel i (world coordinate). x is projected from 

the world coordinate system to the camera coordinate 

system where it was extracted. Since the camera is in the 

origin of the camera coordinate system, it comes that  is the 

vector that is directed from the pixel on the surface to the 

camera. For near photometric stereo, the equation (1) needs 

to be corrected into (5) by a quadratic or cubic inverse as 

explained in [6] where f = 2 or 3 depending on the selected 

model. If the model is not  near  photometric  stereo,  we  set 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5) 
 

 

f = 0 which corresponds to the classic case of photometric 

stereo [7]. 

 
We consider the notation (6) where k means it is the 

index of the image the value was extracted from. (6) is a 

vector whose size is 3. 

  

  (6)  

 

 

With at least 4 different pixels corresponding to the 

same point in space, we get our photometric system that we 

can solve (7). The light vectors also need to be independent. 

Note that if we consider that there is no ambient light, we 

can solve the system with only 3 correspondences. 

 

  

 

(7) 

 

 

 

 

For better result, we solve this system using the 

least-square method with as many equations as possible 

instead of just 4. By solving this system, we get  . The 

norm of the results, provide  and the normalized result 

provides . We finally get normal vectors. We do this 

computation for all the pixels that have enough 

correspondences. To remove the outliers, we use a 

RANSAC approach. 

 

III. RESULTS 

 

We applied photometric stereo for sparse points 

which provides fair result. To get the full control of the 

camera movement, we generated a 3D scene using Blender  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where we can control the light and the camera. We tried 

several experiments using different conditions. 

 

A. Influence of the number of frame 

 

First, we investigate the influence of the number of 

frames and correspondences for flat surfaces. The object we 

used was a cube and we made the camera turned around the 

object. We chose a texture colorful but with light colors to 

facilitate the key points tracking and the photometric stereo. 

The light is virtually put far away of the scene but it still 

follows the camera movement. In this case, f=0. We tried to 

use different number of frames to see how the normal 

vectors evolve. For each experiment, we were oscillating 

around the cube to be sure that we have a wide variation of 

the light vectors for each axis. Without this large variation, 

the normal cannot be computed properly since the rank of 

the light matrix will not be 3. You can the result of one 

experiment on Fig. 2.  

 

As you can see on figure 3, to recover the correct 

normal vectors, in practice, we need way more than 3 

correspondences to get result. The results start to be fair 

when you have at least 8 correspondences. This method 

cannot work with just a few images. 

 

 

Nb Key frame / 

nb  frame 

Nb of average 

correspondences 

after RANSAC 

Nb good vectors 
(at most 1% shift 

from the expected 

direction) / Nb 

normal estimated 

40/1000 11 247  /300 

30/400 8  100/202 

24/200 6 32/108 

18/100 4 9/60 

9/50 3 2/50 

Fig. 3. Evolution of the percentage of good normal 

depending on the number of frames used as input. The 

number of correspondences corresponds to the size of all 

the systems we solved. As a reminder, 3 is enough without 

ambient light. 

 

 

 

Fig. 2. Bottom: example of 3 input images (bottom) with a textured cube. Up 

left: normal vectors for the face A with 1000 input images. Up right: normal 

vectors for the two faces A and B with 200 input images. 

A A 
B A 

C 



B. Comparison with stereo matching based normals,  

 

For another experiment, we used a bunny as the 

object whose texture is again light and colorful. The camera 

trajectory is again moving around the object with a large 

variation on each axis. The Fig.4 shows the camera 

trajectory and some input images.  

 

We noticed that the number of images has a huge 

influence on the  

 

 

 

 
Fig. 4. On the left: Trajectory of the camera (green lines), 

Key frames positions (blue rectangles) and key points (red 

dots). On the right: examples of 3 images used as input out 

of 1000. 

 

We compared the rendered normal vectors of our 

technique with the rendered normal vectors based on the 

computation of the point cloud estimated by the stereo 

matching (computed from a normal map). As you can see on 

Fig. 5, our technique is better to reshape the original shape. 

With stereo matching solely, the surfaces are estimated way 

more flat than they are.   

 

 

 
Fig. 5. Up: the normal estimated thanks to stereo matching. 

Down: the normal vectors estimated with 1000 images. The 

grey part corresponds to the 3D reconstruction of the scene 

with stereo matching based on only two frames. 

 

IV. CONCLUSION AND NEXT STEPS 

 

SLAM allows an accurate tracking that gives more 

freedom to apply photometric stereo by removing the classic 

fixed camera constraint. Thanks to photometric stereo, it is 

possible to refine the flatness that the stereo matching 

usually estimates. This technique is more suitable when 

there is no ambient light which makes it good in dark 

environment. 

 

As in classic photometric stereo problem, we 

require a lot of camera movement and many images as 

input. The minimum number of correspondences (3 without, 

4 with ambient light) is not sufficient this is one it is 

important to get a large number of correspondences. 

 

Next step for us is to densify our vectors. Because 

of the poor efficiency of the correspondences found by 

stereo matching, only a few correspondences can be used for 

photometric stereo. Photometric stereo while the camera is 

moving is really sensitive to the correspondences and small 

shifts of few pixels can make the results wrong. We are now 

investigating to find a way to get more reliable 

correspondences. It will in the same time increase the 

quality of our normal vectors and densify or results. 

 

We also target a pipeline fully applicable with a 

direct smartphone. Some calculation optimization needs to 

be addressed to make it possible. 
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