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Abstract. Recent semantic segmentation systems have achieved sig-
nificant improvement by performing pixel-wise training with hierarchi-
cal features using deep convolutional neural network models. While the
learning process usually requires pixel-level annotated images, it is diffi-
cult to get desirable amounts of fine-labeled data and thus the training
set size is more likely to be limited, often in thousands. This means
that top methods for a dataset can be fine-tuned for a specific situation,
making the generalization ability unclear. In real-world applications like
self-driving systems, ambiguous region or lack of context information can
cause errors in the predicted results. Resolving such ambiguities is cru-
cial for subsequent operations to be performed safely.

We are inspired by work from CodeSLAM where optimizable pixel-
wise depth representation is learned. We modify the regression method
to work on the pixel-wise classification problem. By training a varia-
tional auto-encoder network conditioned with a color image, the com-
puted latent space works as a low-dimensional representation of seman-
tic segmentation, which can be efficiently optimized. As a consequence,
our model can correct the error or ambiguity of the prediction during
the inference phase given useful scene information. We show how this
approach works by giving partial scene truth and perform optimization
on the latent variable.

Keywords: Semantic segmentation · Variational autoencoder ·
Optimization

1 Introduction

Semantic segmentation task aims to predict the categorical label for every pixel
in the image, which has been one of the grand challenges in computer vision
domain. It is a topic of broad interest because of potential applications like auto-
matic driving. Most of the state-of-the-art semantic segmentation works [4,17,19]
are based on FCN [10] liked networks, where performing end-to-end training is
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possible along with useful hierarchical features to catch both context and local-
ization information. However, the successful training of these networks usually
requires large number of annotated training samples, which are usually beyond
reach in many cases. That leads to a problem that for most of the current FCN
based models, the generalization ability is questioned when applied to dynamic
and complex scenes. Ambiguities and errors are common in the results, and in
real-world applications, enhancing the prediction accuracy is important before
further actions are made.

In this paper, we use image-conditioned variational auto-encoder to encode
semantic segmentation map, making it possible to optimize predicted result
with changeable latent space. While some models [2,3,16] adopt conditional ran-
dom fields (CRFs) as a post-processing step to refine the prediction result, our
proposed model maintains a trainable end-to-end system by incorporating the
stochastic neurons inside the network architecture as in [9,12,15]. Besides, since
our work models the conditional distributions of semantic segmentation output
by using sampled latent variable, different modes of result can be inferred as the
variants change. That is to say, unlike other deterministic models, our model can
make diverse predictions and thus initial prediction can be optimized as long as
additional scene information provided.

Our work is inspired by CodeSLAM from Bloesch et al. [1] where pixel-wise
depth information is encoded with the latent space named code. The code is a
compact representation of dense scene geometry, which can be jointly optimized
with camera poses when multiple overlapping frames are available. While [1]
is a regression model using encoded information to retrieve shape parameters
that can’t be predicted with a single image, our model is its counterpart in the
classification task. Provided additional information of the scene, we can perform
optimization on latent space using constraints like consistency of semantic con-
text or geometry. In self-driving systems, depth data, ego-motion or methods like
white line detection can serve to provide such additional information, making
it able to resolve ambiguities in semantic segmentation results. In our current
implementation, instead of combining with other methods or sensors to attain
additional information, we manually provide partial scene truth by giving true
label of one certain class and evaluate optimization result. This is practical in a
similar way to active learning introduced in [11].

Two key contributions of our paper are:

– The extension of the architecture in CodeSLAM that makes it possible to
optimize semantic segmentation result on learned models.

– The design of a unique cost function to attenuate error term in learning
process using heteroscedatic uncertainty.

In the rest of this paper, we will explain our model and then we show how
the learned multimodal distribution of semantic segmentation model can resolve
ambiguities and errors of prediction.
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Fig. 1. Illustration of our learning framework. Top part: U-net [13]. Bottom part:
VAE. Top left: input color image. Bottom left: input ground truth label. Top right:
prediction uncertainty. Bottom right: reconstruction of semantic segmentation (Color
figure online)

2 Color Image Conditioned VAE

Similar to CodeSLAM, our model uses an image conditioned variational auto-
encoder (CVAE) to learn the semantic representation. The basic learning frame-
work is shown in Fig. 1. The bottom part is a variational auto-encoder network
that learns the conditional probability densities of semantic segmentation, with
the conditioning feature maps provided by the U-Net [13] on the top part. As
described in [1,14], a naive implementation of auto-encoder will be limited by the
information bottleneck, making only major traits of input able to be retrieved.
By conditioning with feature maps from color image, the auto-encoder part no
longer need to encode full scene information. The semantic segmentation pre-
diction SS thus becomes a function (decoder) of image I and c, where c(named
code in CodeSLAM) is the latent space composed of a N-dimensional vector.

SS = f(I, c) (1)

We can say that common semantic segmentation architectures solve a none-code
version of the above problem. Due to the introduction of the latent variants (code
c), the model becomes able to efficiently produce unlimited number of hypothe-
ses. Our model is a combination of common FCN based semantic segmentation
and probabilistic generative model (VAE), where every random sample on the
latent space can produce a corresponding segmentation map. Provided useful
information about the scene, we can find the optimized code to resolve ambigu-
ities during the inference phase.

2.1 Network Architecture

Our detailed network architecture is provided in Fig. 2. Ground truth segmenta-
tion labels are one-hot encoded before being inputted to the Conditional Varia-
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Fig. 2. Network architecture of our CVAE model. The computed feature maps are
concatenated to the corresponding layers of both encoder and decoder (conditioning).
The bottleneck of VAE is composed of two fully connected layer, each meaning mean
and variance. Then latent space is sampled according to Gaussian distribution. We
use stride length 2 to perform down-sampling, and bilinear interpolation to perform
up-sampling. While the VAE part outputs S’ as the reconstructed segmentation map,
the U-Net part outputs b as uncertainty.

tional Auto-encoder. Then latent space is calculated through two fully connected
layers in the bottleneck part, each with a dimension of N, computing mean and
variance respectively. Then, we sample the latent space according to the Gaus-
sian distribution. During the learning process, a KL-divergence cost is added to
reconstruction loss as described in [8]. In the equation below 2, N stands for
the length of latent vector (code size). μ and σ represent mean and variance
respectively.

Lkld =
N∑

x=1

(− log(σx) − 1 + σx + μ2) (2)

We perform condition on the VAE by concatenating feature maps calculated
by the U-Net to corresponding layers (same resolution) in both encoder and
decoder part. At each downsampling step we double the number of channels for
the feature maps, and at every upsampling step we half the number of feature
channels. Between every downsampling and upsampling pair, skip layer con-
nection is used to take advantage of both coarse but discriminative features and
fine, shallow features. Unlike the U-Net architecture in CodeSLAM [1] or original
paper [13], we stop downsampling at ×16 times and replace the bottleneck part
with recently popular dilated convolution [4,17–19]. Dilated convolution enlarges
the receptive field of the network while maintaining the resolution by inserting
holes in the convolution kernels, which effectively prevents the information loss
caused by repetitive downsampling operations.

Besides the prediction of segmentation map S’, we predict a pixel-wise uncer-
tainty b to attenuate the cost function. While [1] uses a cost term computing
negative log-likelihood of the observed depth, we follow the classification model
introduced in [7] to form our own loss function. For every pixel i, S′

i is the pre-
dicted logits before the final softmax layer. And bi is the predicted uncertainty
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(variance). We sample from these logits T times following Gaussian distribution,
each represented by Si,t. With the ground truth label being c for pixel i, Eq. 4
gives the uncertainty aware loss function for our model.

Si,t = P ′
i + biεt εt ∼ N (0, I) (3)

LS =
∑

i

log
1
T

∑

t

exp(Ŝi,t,c − log
∑

c′
exp Ŝi,t,c′) (4)

The network will learn and adjust the pixl-wise uncertainty b so that loss
attenuation can be achieved to get better segmentation result, in a similar way
to its regression counterpart in CodeSLAM. We also use ReLu as activations for
most of the layers, except for the computation of fully connected layer in latent
space, the decoder part of VAE and final output where identity activations are
used. Especially, the decoder part without nonlinear activations are regarded as
linear decoder, allowing the pre-computation of the Jacobians.

2.2 Training

Our network is trained on the CityScapes Dataset [5]. The Cityscapes Dataset
is a large dataset mainly focusing on semantic understanding of urban street
scenes. The fine labeled dataset we use contains 5000 images, with the training,
validation, and test set contains 2975, 500, and 152 images respectively.

We choose the ADAM optimiser with an initial learning rate of 10−4. With
a batch size of 8, we train the network for 80 epochs. We also adopt batch
normalization [6] for smoother training process.

As is mentioned in Sect. 2.1, our model’s loss function is composed of both a
KL-divergence cost and an attenuated segmentation loss, given by Eqs. (3) and
(5) respectively. We put a relative weight Wk on KL-divergence and found a
code size of 128 and weight factor of 8 work fine in our current training model.

Loss = LS + WkLkld (5)

3 Inference and Refinement

During the inference phase, the encoder part of VAE is not used due to the
absence of ground truth label. We assign the code with 0 value at first and thus
the initial prediction is given in Eq. 6.

SS = f(I, 0) (6)

This zero code prediction can be regarded as a model close to common single
image semantic segmentation, where ambiguities and errors may remain. As we
perform optimization on latent space with additional information of the scene,
we can get a refined segmentation map. Although it’s able to be combined with
framework like CodeSLAM to have joint optimization by keeping both geometric
and semantic consistency, we use a simpler refinement method to evaluate the
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optimization validity of our model. In our current work, we give partial truth
information of a certain scene and perform optimization on that truth-aware
region. Let c be the class that truth is given when M class exists. For every pixel
j that belongs to the truth-aware area belong to c, Ti is the true one-hot label,
and Pi gives the predicted probability vector.

Ti = [0, 0, ...1, ..0] (7)

Pi = [p0, p1, ...pc, ...pM−1] (8)

We use the Euclidean distance between two vectors to measure the semantic
error. Especially, the probability vector is computed from code c and image I
through the linear decoder according to Eq. 1, derivative of the probability w.r.t
the code thus can be computed to allow optimization. The low-dimensional latent
space learnt should also encode the semantic correlation among different classes,
what we are expecting is that by performing optimization to reduce the semantic
error on truth-aware area, prediction of both adjacent and non-adjacent area can
also be refined.

4 Experiments

In this section, we first present how our model works by showing different output
examples in Fig. 3. Although the zero-code segmentation results are close to
those predicted from code encoded by ground truth label, errors and ambiguities
appear. Especially in the left and middle columns of Fig. 3, we can observe that
zero code prediction show errors in areas close to sidewalk and road, and get
confused with bus and car. These errors are corrected in the output predicted
from encoded information, i.e., the encoded information brought higher accuracy
to the model. The output uncertainty is learned during training to attenuate cost
in difficult regions as described in Sect. 2.1.

4.1 Optimization on Partial Region

Since the semantic error term is differentiable w.r.t to the latent space, additional
semantic information can serve to optimize the code enhance the prediction.
Due to the use of indentity activations in decoder part of VAE, the derivative of
probability maps w.r.t to the code are effectively pre-computed, accelerating the
evaluation of Jacobians when performing optimization. This may be helpful for
faster runtime when realtime performance is required to perform joint optimiza-
tion, especially in self-driving systems. As mentioned in Sect. 3, we use partial
scene truth to perform optimization in our current simple experiment. In the
following sections, we will first show the qualitative refined results when given
road class truth. Then we compare the quantitative evaluation of class mIoU
and pixel accuracy when optimizing using different class truth.



Learning an Optimisable Semantic Segmentation Map 385

Fig. 3. The learnt output examples of our model on CityScapes Dataset. From top to
bottom: color image, ground truth label, reconstructed segmentation map with encoded
code, segmentation with zero code, learnt uncertainty. (Color figure online)

4.2 Qualitative Result

In Fig. 4 we compare segmentation results before and after optimization is per-
formed. Although the prediction with zero-code captures scene objects correctly
in general, we can see obvious errors occur near boundary regions. After provid-
ing road class truth to optimize the code, we can see how errors are corrected
in the bottom line of optimized result. In the left example there are no other
big changes except for the road and sidewalk class. However, in the left half
result, not only road or adjacent regions, details of vegetation and cars’ internal
areas are also refined (high light with red squares). Although not as accurate as
ground truth segmentation, we can observe how the optimized result get refined
towards those decoded from ground truth label encoded information.
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Fig. 4. The qualitative optimization examples on CityScapes Dataset. From top to
bottom: color image, ground truth label, reconstructed segmentation map with encoded
code, segmentation with zero code, optimized result given truth on road class. (Color
figure online)

4.3 Quantitative Evaluation

To evaluate the effectiveness of optimization on partial region, we calculate IoU
and pixel accuracy before and after the optimization, using 500 validation images
on CityScapes Dataset. The results are shown in Fig. 5 and Table 1.
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Fig. 5. IoU of our optimization result given different class truth. Besides class-wise IoU,
we also calculate the mIoU for all classes (second row) and mIoU excluding truth-given
class (first row)

We can see from the IoU result that, by giving one specific class truth as addi-
tional information, the refined result naturally improves impressively at both
that specific class and adjacent class regions (e.g. road and sidewalk). What’s
more, in areas that may seem unrelated to hardly get any influence, we can still
observe improvement with IoU. Comparing the mean IoU for classes excluding
the optimized one (first row of the graph), we find that a general refinement of
result is possible with our partial optimization method. On the other hand, we
compare the pixel accuracy before and after the optimization, and also calculate
the pixel accuracy when simply replacing partial prediction with true labels,
without any optimization. Besides an obvious improvement when comparing
with result from zero-code prediction, we also find that partial optimization
in all the three cases (road, sidewalk and building) performs better than simply
replacing data with true labels. That means that optimization on one class region
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expands its influence to other regions. The low dimensional semantic encoding in
our model learns the underlying correlation between different classes, and opti-
mizing on one leads to the refinement of others, even those seemingly unrelated.

Table 1. Pixel accuracy results with different class truth provided.

Method Pixel acc.

0-code 90.1

Road-replaced 91.9

Road-optimized 92.4

Sidewalk-replaced 91.5

Sidewalk-optimized 92.1

Building-replaced 90.8

Building-optimized 91.6

5 Conclusions

We have shown that our learned image-conditioned representation for semantic
segmentation can be effectively optimized with small number of parameters.
Our compact representation of segmentation map can retrieve information that
is useful for errors and ambiguities to be corrected.

In our future work, for more applicability, we will combine with methods like
white line detection to offer truth information about the road, working in a sim-
ilar way to sensor fusion. Also, combining with CodeSLAM framework to form
a joint optimization of both semantic label and scene geometry is also possible.
In our current implementation, we use U-Net to extract features, which may not
be a good choice for complex urban scene segmentation. In the longer term, we
would like to combine state-of-the-art semantic segmentation architecture with
our probabilistic inference module. If we can refine the prediction result even on
top of those high accuracy methods, our compact representation of segmentation
may serve as an optional optimization technique for general models, similar to
CRF but different in that our method being unified in an end-to-end inference
framework, adjustable as scene and provided information change.
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