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Abstract—The key to an accurate understanding of terrain is
to extract the informative features from the multi-modal data
obtained from different devices. Sensors, such as RGB cameras,
depth sensors, vibration sensors, and microphones, are used
as the multi-modal data. Many studies have explored ways to
use them, especially in the robotics field. Some papers have
successfully introduced single-modal or multi-modal methods.
However, in practice, robots can be faced with extreme con-
ditions; microphones do not work well in crowded scenes, and
an RGB camera cannot capture terrains well in the dark. In
this paper, we present a novel framework using the multi-
modal variational autoencoder and the Gaussian mixture model
clustering algorithm on image data and audio data for terrain
type clustering. Our method enables the terrain type clustering
even if one of the modalities (either image or audio) is missing
at the test-time. We evaluated the clustering accuracy with a
conventional multi-modal terrain type clustering method and
we conducted ablation studies to show the effectiveness of our
approach.

I. INTRODUCTION

An understanding of ground terrain in open-world environ-
ments using a camera is a popular computer vision research
area because of its widespread applications in robotics and
automatic vehicular control [1]–[6]. In the field of autonomous
driving [3], ground terrain classification is very important
because certain types of terrain may negatively affect a robot’s
movement. Similarly, information about the surrounding ter-
rain may help a robot modify its course of action during au-
tonomous navigation [2], [6]. In the field of assistive robotics,
the robot can warn a visually impaired person of potential
danger concerning the ground type [7], [8].

Gaining an understanding of terrain types from visual input
is a highly challenging task because the terrain of the same
type can vary in appearance, while different terrain types may
be very similar in appearance. To address the inherent am-
biguity of vision-based terrain classification, other modality-
based classification methods, such as audio-based [9]–[12],
tactile-based [13]–[15] or vibration-based [16], [17], methods
have been proposed. For the audio-based terrain classification
method, audio sensors measure terrain properties through the
interaction between the robot’s wheel with its and. While
these conventional studies have proved that each modality is
effective for identifying terrain type, methods using only a
single modality remain ambiguous because they may include
noise and may not be able to keep up with changes in
buildings and scenes. Recent works on multi-modal learning
have demonstrated robust complementary features that yield
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Fig. 1: Overview of our terrain clustering framework. We train
the model to extract the features from audio-visual data in a
self-supervised manner. At the testing, we assume that only a
single modality (either audio or visual) can be accessed due
to the extreme conditions, the obtained data is incrementally
clustered into terrain types.

superior performance in many learning tasks [18]–[20]. We
follow the paradigm of multi-modal learning, leveraging two
diverse modalities, sound and vision, to learn features for
identifying robust terrain.

Several methods have been proposed for multi-modal terrain
type classification [5], [6], [21]. Otsu et al. [5] proposed a
method that classifies the terrain type based on image and
vibration data. Zurn et al. [6] presented a self-supervised visual
terrain discovery method learned from the audio data, which
semantically labels the terrain type to facilitate robot naviga-
tion. Kurobe et al. [21] proposed a multi-modal self-supervised
learning scheme that extracts audio and image features to
cluster terrain types. Then the terrain cluster labels are used
to train image-based convolutional neural networks (CNNs)
to predict the terrain types. However, several problems in
deploying the method as the terrain type discovery application
the real-world scenarios.

First, the data from multiple modal sensors are not always
useful. For example, it is difficult to capture informative
features from input data signals in extreme conditions. In the
case of visual sensors, extreme conditions are those with low
illumination conditions, such as those during the night [22],
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as they make it difficult to capture the textures of terrain in
images. In the case of audio sensors, crowding is an extreme
condition, as it is difficult to capture the sounds of vehicle—
terrain interaction sound. The prediction model should be
capable of handling these extreme conditions in real-world
scenarios. However, the conventional multi-modal prediction
method [5], [6], [21] allows the model to predict only a single
input source, such as from only images [6], [21]. In this paper,
we aim to tackle the problem that one of the modalities of
gathering data is non-informative while also aiming to solve
the terrain type identification task. Specifically, when training
the multi-modal feature learning model, the audio and visual
data are captured under normal conditions. When testing the
model, only one modality (either image or audio) is available
for prediction. Note that we do not aim to detect whether the
data are captured in extreme conditions, but we assume that
one input modality is missing at the time of the test.

The second problem is that when the model is applied to
robotics, the robot captures the data sequentially. As the robot
encounters data, the clustering model should not only predict
the clustered index of the data but also progressively update the
prediction model to achieve an accurate prediction. Moreover,
if the clustering model is updated while it is running, it gains
the potential to cluster terrain types that were not seen during
its training.

Moreover, most state-of-the-art classification methods re-
quire a significant number of data samples, which can be
arduous to obtain in supervised learning settings, where labels
must be manually assigned to data samples [23], [24]. In con-
trast, self-supervised learning enables the automatic labeling of
training data by exploiting the correlations between different
input signals, thereby greatly reducing the amount of manual
labeling work [25].

In this paper, we present a multi-modal self-supervised
learning framework for terrain type clustering, which can ac-
cess a single modality at the test time and which incrementally
updates the clustering model. The overview of this work is
depicted in Fig. 1. To the best of our knowledge, no work has
been proposed that addresses these two important problems
for deploying such models in the real-world applications.
To handle the missing modality at test time, we employ
a multi-modal variational autoencoder (MVAE) [26]. This
method has a new training paradigm that learns using joint
distribution and is robust against missing data. As the latent
variables are sampled from multivariate Gaussian distribution,
we employ incremental Gaussian mixture models (IGMM) for
the incremental clustering. Moreover, we present a novel input
data pre-processing method to effectively extract the features
from audio and image data that are informative for terrain type
clustering. We transformed audio data into time—frequency
representations of cochleograms, and we extracted the edges
of image data and encoded both edge images and raw images.
We evaluated our terrain type clustering framework with the
dataset collected by Kurobe et al. [21]. We also evaluated the
clustering accuracy with the conventional multi-modal terrain
type clustering model, and we conducted extensive ablation

studies to show the effectiveness of our approach.
In summary, these are the major contributions of this work:
• To the best of our knowledge, we are the first to present a

novel single-modal incremental terrain clustering frame-
work learned in a self-supervised manner from multi-
modal audio-visual data.

• Our method combines an MVAE and an IGMM for
terrain type clustering. Using the IGMM clustering al-
gorithm allows for the incremental clustering of terrains
and updates the Gaussian mixture model during test-time.

• We present an input data pre-processing method for
generating the informative latent variables for terrain type
clustering.

• We also evaluated the clustering accuracy using con-
ventional multi-modal terrain type clustering, and we
conducted extensive ablation studies to show the effec-
tiveness of our approach.

II. RELATED WORK

Our work is uniquely positioned in the context of research
using the MVAE model and IGMM for self-supervised multi-
modal learning on terrain clustering. Our proposed model,
shown in Fig. 1, undergoes multi-modal training with both
image and audio, but the MVAE architecture enables the single
modal inference of either image data or audio data upon
testing.

A. Terrain type understanding

An understanding of terrain types is essential in the path
planning of system for autonomous robots’ navigation systems
[2], [6], [27], [28] because the condition of the terrain can
affect the robot’s stable and safe running. In this subsection,
we introduce the conventional single-modal and multi-modal
methods of identifying terrain types.

1) Single-modal based: Many papers have proposed meth-
ods of understanding terrain type, including audio [9]–[12],
tactile [13]–[15], vibration [16], [17], vision [2], [29]–[31].

Some classification approaches are vision-based: stereo-
based [2], [29], feature-based [31], and spectral-based [30]
approaches. However, vision-based classification is very sen-
sitive to brightness or reflections. In recent studies, it is
more common to use visual data alongside other data in
self-supervised or multi-modal methods, as we show in the
following subsection. As audio-based clustering is not affected
by light conditions, it has been highly investigated in the field
of robotics, especially legged robots [9] and vehicle robots
[10]–[12].

2) Multi-modal based: Multi-modal methods of terrain
type recognition have been actively investigated for the last
few years [5], [6], [21], [32]. Zürn et al. [6] proposed
an audio-visual-based, self-supervised terrain type semantic
segmentation method. This method relates image features and
audio features, which are extracted from different models, by
reflecting the results of classifying image features onto the
triplet loss of the audio data. This model is self-supervised,
but, because the image feature extractor and audio feature
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extractor are completely independent, they do not adapt to
situations lacking either image data or audio data at test-time.
In contrast, our method assumes such extreme conditions will
occur and uses one strongly combined architecture.

Kurobe et al. [21] performed feature extraction from images
and audio with two independent variational autoencoders.
Their method and our method differ in terms of their purpose
settings. The final goal of Kurobe et al.was terrain type
identification from only images using a convolutional neural
network (CNN) which is trained by both image and audio data.
Therefore, the number of categories is fixed in the training
process. In contrast, our goal is not the identification but the
clustering of terrain features through an MVAE: relatively
similar terrain types are assigned to the same class and
different ones are assigned to different classes. Because of this
fundamental difference in purpose, our method can potentially
be applied to unknown terrains at test-time. Besides, the
advantage of using both image and audio in [21] is limited to
improving the accuracy of test-time clustering. In our method,
all sensing data is available for use at test-time in a single-
modal way or combined with any other sensing data in a multi-
modal way, depending on the testing environment.

Natalia et al. [32] proposed a multi-modal fusion strategy
for the gesture and near-range action recognition. Their ran-
dom dropping of separate channels (ModDrop) shares some
similarities with ours in allowing the model to obtain arbitrary
combinations of the modalities.

Similarly to those two methods [6], [21], our method is
trained from both image and audio data to leverage the
multi-modal information. These two methods aim to learn
the informative features from audio-visual data at the training
time, and they predict the terrain types from only the image
data. Our method also aims to extract the informative feature
from the audio-visual data. However, at the test-time, our
method predicts the terrain types from either image or audio
data to handle the extreme capturing conditions in the real
environment.

B. Self-supervised learning

Many approaches make use of multi-modal data, using
one modality to supervise the training of another modality.
Wellhausen et al. [33] proposed a navigation system using
RGB-based semantic segmentation in a fully automated, self-
supervised way. Books et al. [34] adopted vibration-based
classification using a support vector machine (SVM) classifier
to supervise vision-based classification. Zürn et al.and Kurobe
et al. [6] [21] successfully related image data and audio data to
identify limited numbers of terrain types in a self-supervised
framework. In this paper, we consider our method to be self-
supervised in that the result of a single-modal test is improved
by another modality through multi-modal training.

C. Input preprocessing for audio data

As 44100 Hz or 48000 Hz are major sample rates of digital
audio data, and a certain length is required for robustness
against noises, the number of dimensions of audio input can

increase enormously. To handle this problem, some studies
have preprocessed audio data. For instance, Libby et al. [10]
performed both time- and frequency-domain analyses as the
preprocessing of the raw audio signal. Ojeda et al. [11]
computed the discrete Fourier transforms (DFT) of sound data
and use them as the input of neural networks (NNs). Valada et
al. [12] used an short-time Fourier transform (STFT) based log
scale spectrogram for audio pre-processing. At present, it is
more common to transfer audio into frequency-domain feature
extraction, but it is difficult to capture terrain features in just
one small window size; we therefore adopted time-frequency
domain approach by splitting a sound segment of 2.8 seconds
into 64 time-domain pieces and then splitting each of those
pieces into 64 frequency-domain pieces.

III. METHOD

In this section we explain the composition of our learning
framework in Fig. 2: preprocessing of input audio and image
data in Sec.III-A, self-supervised feature learning using a
MVAE [26] in Sec.III-C, feature clustering using an IGMM in
Sec.III-D. Sec.III-B provides an explanation of the VAE that
is preliminary to the MVAE. At test-time, a single modality
(either image or audio) can be accessed, and the feature vector
is extracted using the VAE’s encoder. Then, we incrementally
update the GMM model.

A. Input preprocessing

1) Image: To encode the image into the latent vector
using VAE, we take edge images in addition to RGB images
to include edge information explicitly in the latent vector.
Autoencoders and VAEs trained with Euclidean distance loss
are known to produce blurry images [35]–[37]. This is a
crucial problem for the terrain type clustering task because
edge information is an important cue for clustering the terrain
types. For instance, it is difficult to distinguish a gray Tile
image from a gray Carpet image without the edge information.
Instead of using a generative adversarial networks (GANs)
scheme [37], [38] to reconstruct sharp images, we explicitly
encoded edge images separately from the RGB images to
encode edge information into a latent vector. Specifically,
we applied a Laplacian filter to generate the denoised edge
images. We first applied Gaussian filtering with a 5×5 kernel
and then a four-neighbor Laplacian filter with a 5× 5 kernel
to the raw RGB image.

2) Audio: A one-dimensional raw audio signal is trans-
formed into two-dimensional data before being input into the
NNs in audio-based methods of understanding terrain [39],
[40]. Many audio transformation methods have been proposed
by [41]. Mel-frequency cepstral coefficients (MFCCs) have
been used predominantly as one of the most effective parame-
terizations of acoustic features. MFCCs are a cepstrum-based
feature representation method that mimics human hearing
features: a difference on the Mel scale can be felt like the
same difference in pitch.

The most distinctive point of the Mel spectrogram is that
it is specialized for acoustic representation, so it omits pitch
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Fig. 2: Overview of our proposed terrain clustering framework. The training scheme consists of two modules, feature learning
using MVAE from audio-visual data and feature clustering using GMM. The testing is consists of feature extraction using the
encoder of trained MVAE and cluster prediction using IGMM. Our method predicts the terrain cluster from a single modality
data (either image or audio) even though the training is conducted in a multi-modal manner to extract the informative feature.

information. However, using the sound of rolling wheels as an
example, we assumed that in the terrain clustering task, pitch
information can be an important cue because it depends on the
material of the floor on which the robot runs. We, therefore,
investigated another processing method, the cochleogram.

The cochleogram is a gammatone-based filtering method.
Cochleogram images are obtained from a detailed biophysical
cochlear model, with the assumption that modeling the prin-
ciples of the human auditory system in greater detail could
increase the system’s performance [42]. Its gammatone filter
banks are a parallel sequence of bandpass filters defined as
follows [41]:

hi(t) = atn−1e−2πBitcos(2πωit+ φ) (t ≥ 0), (1)

where a is a constant factor; t is the timestep; n denotes
the order of the filter; Bi is the bandwidth; ωi is the center
frequency in rad/sec; and φ indicates the phase. In this paper,
we used equivalent rectangular bandwidth (ERB) for Bi.

B. Variational autoencoder

VAE is a powerful method that extracts low-dimensional
features in the bottle-neck layer between the decoder, p
parameterized with θ and encoder, and q parameterized with φ
in the spherical Gaussian form. A key point of this algorithm
is that to combat the intractability of the marginal likelihood
of the data that we want to maximize in training-time, VAE
optimizes the evidence lower bound (ELBO). The definition
of the ELBO can be defined as [43]:

ELBO(x) ≡ Eqφ(z|x)[log pθ(x | z)]
− βDKL(qφ(z | x) ‖ p(z)), (2)

where DKL(q ‖ p) is the Kullback-Leibler (KL) divergence
between two distributions, p and q and β is an annealing factor

[43] to alleviate the effect of DKL’s sharp increase in the
early epoch, which disturbs the decrease of losses. Another
key point of VAE is that it enables backward propagation via
the reparameterization trick. Given the autoencoder’s outputs
µ(x) and σ(x), where x is the input, we sampling the latent
vector z fromN (µ(x), σ(x)) by sampling ε ∼ N (0, I) instead
of directly sample z from q(z|x).

C. Multi-modal feature learning

We encode three modalities—raw RGB image xraw, edge
image xedge, and two-dimensional audio data xaudio, which
are generated by combining MFCCs and a cochleogram— into
a single latent vector. To handle the modality missing at test-
time (either image or audio data), we employ the paradigm of
MVAE [26].

Wu and Goodman proposed [26] MVAE as an extension
of the VAE, such that its input is not one x1 but extended
to N -modalities x1, x2, ..., xN [26]. Because this model is
established by assuming that each modality is conditionally
independent, the reconstructed modality can be decoded from
one shared latent vector z. Under this assumption, the product-
of-experts (PoE) structure [44], which originally aimed to
reduce the number of inference networks, is applied to the
MVAE by combining variational parameters in individual
expert models. Theoretically, the PoE maximizes the log-
likelihood of data. Also, because of MVAE’s sub-sampled
training paradigm, we can force every subset of modality
to have close latent variables in the inference network while
avoiding numerical problems.

Under this condition, we can consider set X , which includes
arbitrary subsets of present modalities. The multi-modal ver-

9402



sion of ELBO is [26]:

ELBO(X) ≡ Eqφ(z|x)[
∑
xi∈X

λi log pθ(xi | z)]

− βDKL(qφ(z | xi) ‖ p(z)), (3)

where λi is the balancing factor that regulates the effects on
loss of each modality. Then, the target loss function of MVAE
can be written as:

L ≡ ELBO(x1, x2, ..., xN )

+

N∑
i=1

ELBO(xi) +

k∑
j=1

ELBO(Xj) + βDKL, (4)

where N is the number of modalities, and M denotes the
number of randomly chosen subsets, Xj .

Though our method uses images and edges as independent
input for MVAE and reconstructs them respectively, input
ximage and xedge are fundamentally the same, so we always
regard image and edge as a single unit. A byproduct of this
unity is the reduction of computational costs. In summary, the
target loss in our training time can be rewritten as:

L ≡ ELBO(ximage, xedge, xaudio) + ELBO(ximage, xedge)

+ ELBO(xaudio) + βDKL. (5)

To calculate the first term of Eq.3, which indicates the recon-
struction error, we used mean squared error (MSE) defined as
the following:

MSE =
1

N

N∑
i

D∑
k

(y
(k)
i − x

(k)
i )2, (6)

where y is the reconstructed data, x is the input data, N is the
size of the mini-batch used in training, and D is the dimension
of the feature.

D. Clustering of the latent vectors

If multiple items of data have the same characteristics, the
latent variables tend to be stochastically located close to each
other within a Gaussian distribution in latent space. On the
other hand, if data have different characteristics, they tend to
be located away from each other. What is significant is that
even if the classification of the material of the terrain is the
same (e.g., Grass), latent variables can separate from each
other. Conversely, if different materials (Carpet and Grass)
have similar colors and make similar sounds when robots
are running over them, they are clustered closely. Sometimes,
materials are mixed up or clusters overlap in latent space. This
is the very reason that soft clustering is more suitable than
hard clustering for our aims, which is why we determined
the stochastic assignment of the GMM to be suitable. We
also demonstrated the clustering using the k-means algorithm:
the results of GMM clustering outperformed the results of k-
means clustering in terms of accuracy and stability.

Another essential and powerful advantage of using GMM
is that we do not have to determine the number of clusters,
unlike with k-means. This characteristic is very important for

unsupervised learning, in which there are no labels to help
count the true numbers of clusters, and for terrain clustering, in
which the number of terrain types endlessly increases. Here we
use the IGMM algorithm proposed by Engel and Heinen [45],
which enables us to deal flexibly with a new point that arrives
at test-time and that does not seem to belong to any existing
cluster. The algorithm uses a minimum likelihood criterion
to assign the point to one cluster. If a new latent variable
arrives, the data point x is to belong to a new cluster or an
existing cluster j, where the likelihood p(x|j) is the minimum
likelihood and is lower than the threshold of each cluster. Then
the parameters (i.e., the means µj , the covariances σj , and the
mixing parameters p(j)) accumulate as the summation of the
posterior probability p(j|x).

IV. EXPERIMENT

A. Dataset

We used a dataset introduced by Kurobe et al. [21]. This
dataset uses a super-directional microphone to capture mono-
stereo audio data and uses an RGB camera to capture image
data with about 24 fps. Further information about the capturing
sensor setup is explained in the previous paper [21].

However, in this paper, we modified the original dataset.
The Kurobe et al. [21] dataset aims to predict terrain class
based only on the RGB image at the test time, audio data
are not included in the original test set. Moreover, Kurobe
et al. [21] experimented only with scene-specific evaluation.
That is to say, the trained model can be used only for the
single scene, and Kurobe et al.do not evaluate scene-generic
performance. In this paper, we aim to generalize for multiple
different scenes.

The dataset includes 21 independent movies with RGB
frames and audio data that include seven classes: Pavement,
Grass, Rough concrete, Concrete flooring, Carpet, Tile, and
Linoleum. To generate an the RGB frame and its corresponding
audio clip, we used 2.8 seconds of the audio clip for each
image frame.

There are some temporal gaps between a temporal audio
clip and the corresponding temporal image frame recorded by
a camera due to the dataset’s setup [21] because the super-
directional microphone picks up the sound of wheels and the
RGB camera captures the terrain ahead. To avoid ambiguity
in the borders of terrain due to this gap, we excluded 35
segments in which the camera was recording a border. Finally,
we separated the dataset into 41, 315 data pairs for the training
set and 7, 734 for the test set. Note that we annotated the
terrain types for the data pair, but this ground-truth label was
used only for evaluation, and we did not use the labels in the
training or clustering processes.

B. Network Architecture

The architecture of the proposed model is similar to the
image network employed in MVAE [26]. The encoder of the
image and the audio is composed of two-dimensional convolu-
tional layers with a kernel size of 4×4, a batch-normalization
layer, and Swish activation function [46]. The decoder of the
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image and audio is composed of transposed two-dimensional
convolutional layers with a kernel size of 4 × 4, a batch-
normalization layer, and Swish activation function. We replace
fully connected layers with convolutional layers with 5× 5 of
kernel size to reduce the number of parameters in the network.

C. Data processing

1) Image: We cropped the images in the dataset to 720×
720 from the lower center of the images, then we re-scale
them to 68 × 68. These images were also randomly cropped
to 64× 64 size for data augmentation.

2) Audio: Every audio frame was processed as we ex-
plained in the experiment section. The number of feature
dimensions of the cochleogram was set to 48 and those of
MFCCs was set to 16 to obtain a final input shape of 64× 64
with one channel. To process the MFCCs, we limited the
frequency levels for the calculations by cutting off frequencies
higher than 1500Hz. We used MFCCs with 64 triangular
filters on the Mel scale, and 216-point fast Fourier transform
[21]. For the cochleogram, we used the following values: 9.265
as the asymptotic filter quality factor and 24.7 as the minimum
bandwidth.

D. Training details

We used the Adam optimizer [47] with a learning rate of
10−4 and a minibatch size of 300. The annealing factor β was
set to anneal from 0.0 to 1.0 in the first 20 epochs.

E. Evaluation metrics

In this paper, we employ two evaluation metrics: normalized
mutual information (NMI) and clustering accuracy (ACC),
followed by the conventional clustering method [6].

For NMI, the formula is written as:

NMI(Y,C) =
2× I(Y ;C)

H(Y ) +H(C)
, (7)

where Y is the ground-truth class labels; C is the cluster labels
predicted by GMM or IGMM; H(x) is entropy across x; and
I(Y ;C) is the mutual information, given as:

I(Y ;C) = H(Y )−H(Y | C), (8)

where H(Y | C) is the conditional entropy of C. A higher
value is better for both the NMI and accuracy metrics.

The accuracy of the clustering is defined as:

ACC(Y,C) = max
m

∑N
i=1 1{li = m(ci)}

N
, (9)

where N is the total number of clusters created; mi is the
assigned label in the clustering process; and li is the ground-
truth label for each frame.

Fig. 3: Visualization of the latent vectors using t-SNE. The
ground-truth cluster labels are colorized.

F. Comparison with other method

No conventional method has been proposed for terrain
type clustering based on audio-visual feature learning and
single-modal terrain type prediction. Therefore, we compared
this study’s clustering results with those of the conventional
method [21] using our dataset. We do not compare our results
with those of the method proposed by Zurn et al. [6] because
they aimed to segment images into terrain types, which differs
from our aim.

We compared the clustering results using two methods as
follows:
• Kurobe et al. [21] without CNN:

Kurobe et al. trained VAEs for audio and image input
and then created pseudo labels with the trained data using
clustering. To conduct a fair comparison with our method,
we train the image and audio VAEs, and the features
are extracted, then the features extracted using GMM.
We calculated the values of NMI and ACC based on the
clustering labels.

• Kurobe et al. [21] with CNN:
Kurobe et al. predicted cluster labels using CNN trained
in a self-supervised manner using the pseudo labels from
the audio and image data. Regarding the output labels of
the CNN that resulted from clustering, we calculated the
values of NMI and ACC using the ground-truth labels
and the output labels.

V. RESULTS

A. Visualization of the latent space

We visualized the latent space generated by the PoE struc-
ture using the t-SNE algorithm [48] against the training data.
The result of t-SNE on the latent variables is shown in Fig.
3. In the figure, the ground-truth terrain type is colorized: the
embeddings labeled by the same color share similar traits. We
observe that the clusters are well separable and highly correlate
with the ground truth classes.

B. Qualitative evaluation

Fig. 4 shows an example of the qualitative results of our
method. The category (the name of the terrain type) of each
cluster is unknown, but the categories are shown as the
reference. In each box, the most right data are the training data
samples that belong to the same cluster. Our method takes an
input of either image or audio at the test time and predicts
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Fig. 4: The qualitative results of our method. The figure left
shows the results with images, and the right shows the results
with audio data. The data with the same predicted clusters are
covered with the same colorized boxes.

TABLE I: Comparison with Kurobe et al. [21] (w/ is the
abbreviation of with, and w/o is the abbreviation of without).

Method Input NMI ↑ ACC (%) ↑
[21] w/o CNN Audio+image 0.589 58.12
[21] w/ CNN Image 0.001 23.18

Ours w/o update Image 0.401 48.90
Ours w/ update Image 0.377 50.63
Ours w/o update Audio 0.353 50.30
Ours w/ update Audio 0.500 74.39

the terrain cluster index. From the figure, we can observe
that our method successfully predict the correct terrain cluster
index from a single modality data (either image or audio)
even though the feature learning is conducted in a multi-modal
manner.

C. Quantitative evaluation

We summarize the quantitative evaluation of our method
in Table. I. Since Kurobe et al. [21] did not assume a large
scale of data with many types of terrain, the results show a
fatal decline of the NMI and the accuracy when using only
image data, though its results when using an input of image
and audio outperforms our method. Also, Table. I shows the
evaluation of the clustering with and without an incremental
update. By comparing the accuracy of non-updated clustering
and updated clustering, we can observe that the incremental
update at the test time improves the clustering accuracy.

D. Ablation study of the visual input

We evaluated the importance of using edge images as input.
Comparing the methods using edge images and the methods
not using the edge shows that the method which takes the
input of both RGB and the edge outperform the method with
only RGB by 10% in terms of the accuracy. This shows the
effectiveness of using the edge information for the terrain type
clustering.

TABLE II: The comparison of the method (using RGB and
edge image, and using only RGB image as an input of visual
information). We note that for training, we use both image
data and audio data at the training stage.

w/o update w/ update
Input NMI ↑ ACC(%) ↑ NMI ↑ ACC(%) ↑
RGB 0.272 40.16 0.389 57.53

Ours (RGB+Edge) 0.353 50.30 0.500 74.39

TABLE III: Comparison of the results with different audio pro-
cessing methods: MFCCs, MFCCs + cochleogram, and ours
(cochleogram) to show the effectiveness of using cochleogram
for terrain type clustering.

w/o update w/ update
Method Input NMI ACC(%) NMI ACC(%)
MFCCs Audio 0.559 55.92 0.235 34.73

MFCCs + cochleogram Audio 0.389 49.57 0.443 47.98
Ours (cochleogram) Audio 0.401 48.90 0.377 50.63

MFCCs Image 0.295 47.26 0.389 61.02
MFCCs + cochleogram Image 0.318 45.72 0.423 67.71

Ours (cochleogram) Image 0.353 50.30 0.500 74.39

E. Ablation study on sound input

We also performed an experiment to confirm the effec-
tiveness of our method, comparing the encoding using only
MFCCs and using the combination of cochleogram and
MFCCs [40]. To make combined audio inputs, we concate-
nated the MFCCs’ features xmfcc ∈ R16×64 and cochleogram
features xcoch ∈ R48×64. The final input is xaudio =
[xmfcc;xcoch] ∈ R64×64.

The results of comparing methods of audio processing are
shown in Table. III. Though the MFCCs method outperformed
the cochleogram method when the GMM was not updated
during prediction, its NMI and ACC drop significantly below
those of the cochleogram method after updating the GMM and
reassigning the test data. Besides, the cochleogram method
outperformed the combined method for ACC. For the case of
the incremental clustering, it can be said that the cochleogram
method is suitable for preprocessing among the three prepro-
cessing methods.

VI. CONCLUSION

We presented a novel framework to cluster terrain types
from the latent variables of the MVAE using IGMM. Because
of subset training and the product-of-experts architecture of
the MVAE, our method works even though either visual data
or audio data is not available at the test time. The result
demonstrated that even if one of the modality is missing due to
the extreme conditions, our model can receive partial input and
predict the correct terrain type. This framework also enables us
to conduct incremental clustering to achieve high-performance
clustering. We also demonstrated that our input preprocessing
method, which uses edge and RGB information for visual data
and cochleogram for sound data, can be used to extract the
informative feature for terrain type clustering.
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