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Abstract: In recent years, many image-based rendering techniques have advanced from static to dynamic scenes and thus become
video-based rendering (VBR) methods. But actually, only a few of them can render new views on-line. We present a new VBR
system that creates new views of a live dynamic scene. This system provides high quality images and does not require any background
subtraction. Our method follows a plane-sweep approach and reaches real-time rendering using consumer graphic hardware, graphics
processing unit (GPU). Only one computer is used for both acquisition and rendering. The video stream acquisition is performed by
at least 3 webcams. We propose an additional video stream management that extends the number of webcams to 10 or more. These
considerations make our system low-cost and hence accessible for everyone. We also present an adaptation of our plane-sweep method to
create simultaneously multiple views of the scene in real-time. Our system is especially designed for stereovision using autostereoscopic
displays. The new views are computed from 4 webcams connected to a computer and are compressed in order to be transfered to a
mobile phone. Using GPU programming, our method provides up to 16 images of the scene in real-time. The use of both GPU and
CPU makes this method work on only one consumer grade computer.

Keywords: Video-based rendering (VBR), free-viewpoint video, view interpolation, graphics processing unit (GPU), webcam, stere-
ovision, autostereoscopic.

1 Introduction

Given several video streams of the same scene, video-
based rendering (VBR) methods provide new views of that
scene from new view points. VBR is then an extension of
image-based rendering that can handle dynamic scenes. In
recent years, most of the proposed VBR techniques focus
on the visual quality rather than on the computation time.
They use a large amount of data and sophisticated algo-
rithms, which prevent them from live rendering. Therefore,
the video streams are recorded to be computed off-line. The
rendering step can begin only when the scene information
has been extracted from the videos. Such three-step ap-
proaches (record, compute, and render) are called off-line
since the delay between acquisition and rendering is long in
regard to the final video length. On-line methods are fast
enough to extract information from the input videos, cre-
ate and display a new view several times per second. The
rendering is not only real-time but also live.

In this paper, we first present a new VBR method that
creates new views of the scene on-line. Our method does
not require any background extraction and therefore is not
limited to a unique object. This method provides good
quality for new views by using only one computer. Most
of our tests were computed from four or more webcams
connected to a laptop. Hence, this method is low-cost and
compatible with most consumer device configuration.

We also propose an additional video stream management
to increase the number of cameras to ten or more. Only the
four most appropriate cameras are used to compute the new
view. This technique extends the range of available virtual
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view points and improves the visual result.
Finally, we present an adaptation of our method that

can create on-line multiple new views simultaneously. Our
method is especially designed for autostereoscopic displays
and can provide up to 16 images in real-time from 4 input
webcams connected to a consumer grade computer.

In the following parts, we first propose a survey of the
latest off-line and on-line VBR methods. Then, we explain
the plane-sweep algorithm, our contribution related to the
rendering, and our camera array set up. We also detail our
implementation and present our experimental results, fol-
lowed by how our method can be modified to create multiple
views of the scene in real-time. Finally, we present addi-
tional experimental results with this multiple view method.

2 Previous work

This section surveys previous work on both recent off-line
and on-line VBR techniques.

2.1 Off-line video-based rendering

The first proposed VBR method is the virtualized real-
ity presented by Kanade et al.[1]. The video streams are
first recorded from 51 cameras. Then, every frame of every
camera is computed to extract a depth map and create a
reconstruction. Considering the amount of data, this pre-
computing step can be long. Finally, the new views are
computed from the reconstruction of the most appropriate
cameras.

Goldlucke et al.[2] and Zitnick et al.[3] followed the same
approach. Goldlucke et al.[2] used 100 cameras and created
new views of the scene in real-time. Zitnick et al.[3] provided
high quality images in real-time using 8 cameras. The depth
maps are computed using a segmentation method and the
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rendering is performed with a layered image representation.
The stanford camera array presented by Wilburn et al.[4]

computes an optical flow instead of a depth-map and pro-
vides real-time rendering from 100 cameras. Franco and
Boyer[5] provided new views from six cameras with a visual
hulls method.

Considering the large amount of data or the time con-
suming algorithms used by these previous methods, they
appear to be hardly adaptable to on-line rendering.

2.2 On-line video-based rendering

Only few VBR methods reach on-line rendering. Pow-
erful algorithms used for off-line methods are not suited
for real-time implementation. Therefore, we cannot expect
the on-line methods to have the same accuracy provided by
off-line methods.

The most popular on-line VBR method is probably the
visual hulls algorithm. This method extracts the silhouette
of the main object of the scene on every input image. The
3D shape of this object is then approximated by the in-
tersection of the projected silhouettes. There exist several
on-line implementations of the visual hulls described in [6].
The most accurate on-line visual hulls method seems to be
the image-based visual hulls presented by Matusik et al.[7]

This method creates news views in real-time from four cam-
eras. Each camera is controlled by one computer and an
additional computer creates the new views. The methods
proposed by Li et al.[8,9] are probably the easiest to im-
plement. The main drawback of the visual hulls methods
is the impossibility to handle the background of the scene.
Hence, only one main object can be rendered. Furthermore,
the visual hulls methods usually require several computers,
which make their use more difficult.

Another possibility to achieve on-line rendering is to
use a distributed light field as proposed by Yang et al.[10]

They presented a 64-camera device based on a client-server
scheme. The cameras are clustered into groups controlled
by several computers. These computers are connected to a
main server and transfer only the image fragments needed
to compute the requested new view. This method provides
real-time rendering but requires at least 8 computers for 64
cameras and additional hardware.

Finally, some plane-sweep methods reach on-line ren-
dering using a graphic hardware, graphics process-
ing unit (GPU). The plane-sweep algorithm introduced
by Collins[11] was adapted to on-line rendering by
Yang et al.[12] They computed new views in real-time from
five cameras using four computers. Geys et al.[13] also used
a plane-sweep approach to find out the scene geometry and
rendered new views in real-time from three cameras and one
computer. Since our method belongs to the latter family,
we will expose the basic plane-sweep algorithm and contri-
bution in the next section. Then, we will detail our method.

3 Plane-sweep algorithm

This section exposes the basic plane-sweep algorithm and
surveys the existing implementations.

3.1 Overview

The plane-sweep algorithm provides new views of a scene
from a set of calibrated images. Considering a scene where
objects are exclusively diffuse, the user should place the vir-
tual camera camx around the real video cameras and define
a near plane and a far plane such that every object of the
scene lies between these two planes. Then, the space be-
tween near and far planes is divided by parallel planes Di

as depicted in Fig. 1.

Fig. 1 Plane-sweep: Guiding principle

Consider a visible object of the scene lying on one of these
planes Di at a point p. This point will be seen by every in-
put camera with the same color, i.e., the object color. Con-
sider now another point p′ lying on a plane but not on the
surface of the visible object. This point will probably not
be seen by the input cameras with the same color. Fig. 1
illustrates these two configurations. Therefore, the plane
sweep algorithm is based on the following assumption: a
point lying on a plane Di whose projection on every input
camera provides a similar color potentially corresponds to
the surface of an object.

During the new view creation process, every plane Di

is computed in a back to front order. Each pixel p of a
plane Di is projected onto the input images. Then, a score
and a representative color are computed according to the
matching of the colors found. A good score corresponds to
similar colors. This process is illustrated in Fig. 2. Then,
the computed scores and colors are projected onto the vir-
tual camera camx. The virtual view is hence updated in
a z-buffer style: the color and score (assimilated to depth
in a z-buffer) of the pixel of this virtual image is updated
only if the projected point p provides a better score than
the current score. This process is depicted in Fig. 3. Then,
the next plane Di is computed. The final image is obtained
when every plane is computed.
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Fig. 2 Every point of the current plane is projected onto the

input images (A score and a color are computed for these points

according to the matching of the colors found.)

Fig. 3 The computed scores and colors are projected onto the

virtual camera

3.2 Previous implementations

Yang et al.[12] proposed an implementation of the plane-
sweep algorithm using register combiners. The system
chooses a reference camera that is closest to camx. Dur-
ing the process of a plane Di, each point p of this plane is
projected on both the reference image and the other input
images. Then, pair by pair, the color found in the reference

image is compared to the color found in the other images
using a sum of squared difference (SSD). The final score of
p is the sum of these SSD.

This method provides real-time and on-line rendering us-
ing five cameras and four computers, however, the input
cameras have to be close to each other and the navigation of
the virtual camera should lie between the viewpoints of the
input cameras, otherwise, the reference camera may not be
representative of camx. Lastly, moving the virtual camera
may change the reference camera and induce discontinuities
in the computed video during this change.

Geys et al.′s method[13] begins with a background extrac-
tion. The background geometry is supposed to be static.
This assumption restricts the application of the plane-sweep
algorithm to the foreground part. The used scoring method
is similar to the method proposed by Yang et al.[12], but it
only computes a depth map. Then, an energy minimiza-
tion method based on a graph cut algorithm on the CPU
cleans up the depth map. A triangle mesh is extracted from
the new depth map and view-dependent texture mapping
is used to create the new view. This method provides real-
time and on-line rendering using three cameras and only
one computer. However, the background geometry must be
static.

4 Our scoring method

Our main contribution to the plane sweep-algorithm con-
cerns the score computation. Indeed, this operation is a cru-
cial step since both visual results and speedy computation
depend on it. Previous methods compute scores by com-
paring input images with the reference image. We propose
a method that avoids the use of such a reference image that
may not be representative of the virtual view. Our method
also uses every input image together rather than computing
images by pair.

Since the scoring stage is performed by the graphic hard-
ware, only simple instructions are supported. Thus, a suit-
able solution is to use variance and average tools. During
the process of a plane Di, each point p of Di is projected
on every input image. The projection of p on each input
image j provides a color cj . The score of p is then set as
the variance of cj . Thus, similar colors cj will provide a
small variance which corresponds to a high score. On the
contrary, mismatching colors will provide a high variance
corresponding to a low score. In our method, the final color
of p is set as the average color of cj . Indeed, the average of
similar colors is very representative of the colors set. How-
ever, the average color computed from mismatching colors
will not be a valid color for our method since these colors
provide a low score, and this average color will likely not
be selected for the virtual image computation. This plane-
sweep implementation is summarized in Algorithm 1.

This method does not require any reference image and all
input images are used together to compute the new view.
The visual quality of the computed image is then notice-
ably increased. Moreover, this method avoids discontinu-
ities that could appear in the virtual video when the virtual
camera moves and changes its reference camera. Finally,
this method is not limited to foreground objects.
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Algorithm 1.

Reset the scores of the virtual camera

for each plane Di from far to near

for each point (fragment) p of Di

• project p on the n input images.
cj is the color obtained from this projection on
the j-th input image

• compute the color of p:
colorp = 1

n

∑
j=1···n cj

• compute the score of p:
scorep =

∑
j=1···n(cj − color)2

Project all the D′
is scores and colors on the virtual

camera

for each pixel q of the virtual camera

• if the projected score is better than the current
one
then update the score and the color of q

Display the computed image.

5 Camera array

A limitation of the plane-sweep method is the location of
the input cameras: they need to be close to each other to
provide engaging new virtual views. In fact, the closer they
are, the better the final result is. The problem is then how
to extend the range of available virtual view points without
any loss of visual quality. Real-time plane-sweep method is
limited in the number of the used input images since the
score computation time linearly depends on the number of
input images. Furthermore, real-time video stream con-
trol requires special devices when the number of cameras is
large.

We propose a webcam management to handle up to ten
or more USB cameras from a single computer (see Fig. 4).
Considering the position of the virtual camera, the system
selects the four most appropriate cameras that are used to
compute the new view, and the video streams from non-
selected cameras are disabled. Then, for the next view, if
the virtual camera moves, the set of the selected input cam-
eras is updated. Concerning the cameras configuration, ev-
ery disposition is acceptable since the cameras are no too
far from each other and are placed facing the scene.

Fig. 4 Ten webcams connected to a laptop via a USB hub

In such configurations, the most appropriate cameras to
select for the new view computation are the nearest ones
from the virtual camera. This method does not decrease
the video stream acquisition frame rate since no more than
four webcams are used at the same time.

This method can be used to extend the range of available
virtual view points or just to increase the visual quality of
the new views by using a dense cameras disposition. Figs. 5
and 6 depict these two possibilities in an aligned configu-
ration. In a circle arc configuration, using eight webcams
rather than four will cover 60◦ instead of 30◦. If the user
prefers to place the additional cameras in the 30◦ area, then
the visual quality of the created views will significantly in-
crease.

Finally, we believe that even with five or ten additional
webcams, this system remains low-cost since the price of a
webcam is much lower than the price of additional comput-
ers required by other methods.

Fig. 5 The additional cameras are used to extend the range of

available virtual view points

Fig. 6 The additional cameras are used to increase the visual

quality of the new view by using a dense cameras disposition
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6 Implementation

Since our webcams have a fixed focal length, we com-
pute accurately their internal parameters using Zhang′s
calibration[14]. Then, we can freely move them for our ex-
perimentation and only a single view of a calibration chess-
board is required to perform a full calibration. If every
webcam is of the same model, it is possible to assign them
the average internal parameter matrix. Even if we do not
recommend that procedure, it can be very useful if the user
needs to unplug and replug the webcams. In that case, the
system cannot identify the webcams and attribute them the
right internal parameter matrix. Color calibration can be
performed by the method proposed by Magnor[6,pp.23] or
by the method presented by Yamamoto and Oi[15]. This
method is effective only for small corrections.

We usually set the far plane as the calibration chess-
board plane. The user should then determine the depth of
the scene to define the near plane. These two planes can
also be set automatically using a precise stereo method as
described by Geys et al.[13]

We use OpenGL for the rendering part. For each new
view, we propose a first optional off-screen pass for every
input image to correct the radial distortion and the color
using frame buffer objects. Implementation indications can
be found in [16]. This pass is optional since some webcams
already correct the radial distortion. Color correction is
required only if auto-brightness can be disabled.

Each plane Di is drawn as textured GL QUADS. The
scoring stage is performed due to fragment shaders. First,
D′

is points (fragments) are projected onto the input images
using projective texture mapping. The texture coordinates
are computed from the projection matrices of each input
camera. Multitexturing provides an access to every tex-
ture simultaneously during the scoring stage. Then, this
fragment program computes each score and color using the
algorithm described in Section 4. The scores are stored in
the gl FragDepth and the colors in the gl FragColor. Then
we let OpenGL select the best scores with the z-test and
update the color in the frame buffer. To compute a depth-
map rather than a new view, we just set the gl FragColor
to be the gl FragCoord.z value. Most of the computation
is done by the graphic card, hence the CPU is free for the
video stream acquisition and the virtual camera control.

7 Results

We tested our method on a laptop core duo 1.6 GHz with
an nVidia GeForce 7400 TC. The video acquisition was per-
formed with USB Logitech fusion webcams connected to
the computer via a USB hub. With a 320×240 resolution,
4 webcams streaming simultaneously provided 15 frames
per second. Our tests showed that for this resolution and
frame rate, avoiding camera synchronization does not affect
the visual result.

The computation time to create a new view was linearly
dependent on the number of planes used, the number of
input images, and the resolution of the virtual view. The
number of planes required depends on the scene. During
our tests, we noticed that under 10 planes, the visual re-
sults became unsatisfactory and more than 60 planes did

not improve the visual quality. Hence, in our experimenta-
tion, we used 60 planes to ensure an optimal visual quality.
We set the virtual image resolution (output image) to be
320×240. With such a configuration, the number of input
cameras was limited to 4 due to the GPU computation time.
Our method reached 15 frames per second. Fig. 7 shows the
real-view taken exactly between two adjacent cameras, the
corresponding created image, and the difference. This dif-
ference is small enough to ensure good quality result.

Fig. 7 (a) Real view; (b) Computed view with the virtual cam-

era between the two adjacent input cameras; (c) Difference be-

tween the real and computed views

As shown in Fig. 8, using ten webcams provides a large

Fig. 8 Each new view is computed on-line with a laptop using

4 cameras selected among 10 (The scene was discretized with 60

planes and this method reaches 15 fps.)
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range of available virtual view points. Hence, because of our
webcam management method, the range of available virtual
view points can be extended without any visual quality loss.
The user can decrease the base-line between the cameras.
Fig. 9 shows the two images created from 4 webcams. In the
first case, the distance between the two adjacent cameras is
10 cm, in the second case, 5 cm. We can see that reducing
the base-line greatly improves the visual result.

Fig. 9 Images created from 4 webcams. (a) 10 cm base-line; (b)

5 cm base-line view

In this system, the video acquisition is performed by the
CPU and the new view computation by the GPU, hence
these two processes are independent.

In our tests, the bottle neck was the webcam acquisition
frame-rate. This could be avoided by using other webcams,
then the frame rate would be limited by the plane-sweep
method, and especially by the virtual view resolution.

8 Multiple view computation and
video-based rendering

The previous sections detailed our plane-sweep algorithm
and presented some real-time results. In this section, we ex-
plain how our VBR method can be adapted to multiple view
rendering, i.e., how our method can be modified to render
simultaneously several new views of the scene from different
viewpoints in real-time.

A major application of multiple view rendering is to pro-
vide a set of stereo images for autostereoscopic displays. In-
deed, autostereoscopic devices require several images of the
same scene from different viewpoints. Using ten or more
cameras can provide enough views for an autostereoscopic
display, but even with a low resolution, real-time video
stream acquisition is a serious issue with a single computer.
VBR methods are a good alternative to this approach since
they can provide new views of the scene from a restricted
set of videos, and thus decrease the number of required
cameras.

In the following parts, we introduce autostereoscopic
devices mechanism and their consequences on the video
stream acquisition. We also present the main issues for
VBR methods to satisfy these constraints. Then, we detail
how our plane-sweep algorithm can be modified to create
multiple views in real-time.

8.1 Autostereoscopic display

In recent years, stereoscopic technology has advanced
from stereoscopic to autostereoscopic displays. The latter
family does not involve any glasses or specific device for

the user. Such a screen displays several images of the same
scene and provides to the user an adequate stereoscopic
view according to his relative position from the screen.
Moreover, these displays can support multi-user applica-
tions. Currently, commercial autostereoscopic displays are
available from several famous companies. The spatial mul-
tiplex system is a common method to provide stereoscopic
images. A lenticular sheet is laid on the screen such that
every lens covers a group of pixels. According to the users′

position, the lens will show the adequate pixels. The ma-
jor part of commercial autostereoscopic displays requires
around 10 views. Some recent devices can display up to
64 views[17]. More information about autostereoscopic dis-
plays can be found in [18].

Computer graphics applications[19] for autostereoscopic
devices already exist but stereoscopic video of real scenes
remains a problem if the display supports more than six or
seven views. Indeed, using one camera per view involves a
huge quantity of data and hence storage and transfer issues.
VBR methods are an alternative to decrease the number of
input cameras required for autostereoscopic devices, how-
ever, few VBR methods are suited to on-line multiple view
rendering.

8.2 Video-based rendering and stereovi-
sion

As presented in Section 2, few VBR methods reach on-
line rendering. Moreover, autostereoscopic display applica-
tions require not only on-line VBR methods but also meth-
ods that can create simultaneously several new views of the
scene for every frame.

The visual hulls methods proposed by Li et al.[8,9] may
run on a single computer but the ability to compute several
images simultaneously should be demonstrated. Further-
more, the visual hulls method is suited for an all around
camera configuration but not for a dense aligned camera
configuration required for autostereoscopic display applica-
tions. Finally, the visual hulls involves a background ex-
traction, thus only the main objects can be rendered.

The distributed light field proposed by Yang et al.[10] re-
quires at least 8 computers for 64 cameras and additional
hardware. Thus, this method is incompatible with a com-
mercial use of stereoscopic applications.

Actually, most of on-line VBR methods already fully use
the available computer capability to reach real-time ren-
dering, thus we can hardly expect real-time rendering for
multiple views without any optimization.

The plane-sweep algorithm is well suited for such opti-
mization due to the space decomposition using planes. In-
deed, scores and colors computed on every plane represent
a local information of the scene. This score and color com-
putation, which are a central task in the plane-sweep algo-
rithm, can be shared among every virtual view, and hence
provide a consequent gain of computation time.

8.3 Practical application

Some companies already proposed a 3D autostereoscopic
display for mobile phones designed to display a 3D menu,
images and computer graphics videos[20]. This paper pro-
poses a practical application of our method on communi-



V. Nozick and H. Saito / On-line Free-viewpoint Video: From Single to Multiple View Rendering 263

cations between a mobile phone and a computer for real
scenes. Such situation occurs when someone calls his family
or company. The computer side provides multiple images
of its environment to the mobile phone user.

The main restriction of our application concerns the
bandwidth limitation during the video stream transfer from
the computer to the mobile phone. However, mobile phone
technology can easily support standard online video de-
compression. Moreover, the bandwidth issue is lessened
by the low resolution of the mobile phone screen. Finally,
the system providing the views should work on a consumer
grade computer that is attractive for commercial applica-
tions. Using ten or more webcams can provide enough views
for a stereoscopic display, but even with a low resolution,
real-time video-stream acquisition is a serious issue with a
single computer.

9 Multiple view rendering

9.1 Multiple view computation

Due to its plane decomposition of space, our single view
plane-sweep method can be modified to a k +1 passes algo-
rithm, where k is the number of virtual cameras, to provide
on-line multiple new views.

For every plane Di (see Fig. 1), the score and color of
every point is computed in the first pass. This pass is abso-
lutely independent of the number of virtual views to create.
The information computed during this pass is then pro-
jected onto every virtual view in k passes. During the last
k passes, color and score information is updated on every
successive virtual camera. The k+1 passes are repeated un-
til every plane Di is computed. Hence, our previous method
can be modified, as described in Algorithm 2.

Algorithm 2.

Reset the scores and colors of the virtual cameras′ memory
Vj (j ∈ {1, · · · , k})
for each plane Di from far to near

for each point (fragment) p of Di

• compute a score color and a color score

• store color and score in an array
T (p) = (color, score)

for each virtual camera camj

for each point (fragment) p of Di

• find the projection qj,p of p on camj . Vj(qj,p)
contains previous color and score information on
camj at the position qj,p

• if the score on T (p) is better than the score
stored on Vj(qj,p)
then Vj(qj,p) = T (p)

Convert each Vj into images.

Like in the single view method, the score and color are
computed only once for every point of each plane. Since
the projection of the information on every virtual view dif-
fers, the final views will be different. These information
projections are very fast compared to the score and color

computation. Hence, sharing the score and color computa-
tion speeds up the application and avoids the redundancy
process without any loss of visual quality.

9.2 Implementation

The use of the z-test for the multiple view method would
imply that every new view is rendered on the screen. Thus,
the screen resolution would limit the number of new views
that can be computed. We propose a method where every
process is done off-screen using a frame buffer object. Red,
green, blue, alpha (RGBA) textures are assigned to every
virtual view and an additional texture is used for the color
and score computation.

The color is stored in the RGB component and the score
in the alpha component. The virtual cameras texture will
replace the frame buffer used on the single view method. As
illustrated on Fig. 10 (a), the score and color computation
of a plane does not differ from the single view method ex-
cept that the rendering is performed on texture. Naturally,
the rendering has to be associated with a projection ma-
trix. We select the central virtual camera as the reference
camera for this projection (Fig. 10 (b)).

Then, every virtual camera involves an additional ren-
dering pass. During the pass, the score and color texture is
projected onto the current plane using the reference cam-
era projection matrix (Fig. 10 (c)). The textured plane is
then projected onto the virtual camera (Fig. 10 (d)) using
fragment shaders. The texture associated with the current
virtual camera is used for both rendering and reading the
last selected scores and colors. The fragment program de-
cides to update fragment information or to keep the current
texture value according to the last selected scores. After
computating for the last plane, the virtual camera texture
can be extracted to provide new images of the virtual views.

9.3 Compression and image transfer

Since 3D display and 3D video broadcasting services be-
came feasible, 3D video data compression has become an
active research field. Indeed, without any compression, the
transmission bandwidth linearly increases with the num-
ber of views and becomes a severe limitation for the dis-
play frame-rate. Nevertheless, stereoscopic views represent
the same scene and contain a huge amount of redundan-
cies. Thus, the basic concept of 3D video compression is to
remove these redundancies among the views. There exist
several stereoscopic compression methods. For more infor-
mation, the reader can refer to Kalva et al.[21] .

Since we want our system to be used with mobile phones,
the problem is a bit different. The screen resolution is lower
than that for standard 3D displays but the available band-
width is also restricted by the mobile phone communication
system. Furthermore, the compression part achieved by the
computer should be fast and should not require too many
CPU capabilities. In our tests, we chose an MPEG2 com-
pression. Indeed, the views to be transferred consisted of
the input images and the virtual images. These views can
be sorted by position (from left to right for example) such
that they become suited to be compressed with a standard
video compression method. Such compression is performed
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Fig. 10 (a) The points of the current plane are projected onto every input camera to read the corresponding color; (b) The colors
found are used to compute a score and a color during a rendering process on the reference camera; (c) For every virtual camera, the
scores and colors are projected onto the current plane using the reference camera projection matrix; (d) The scores and colors are
projected from the current plane to the virtual cameras

by the CPU, and hence is compatible for real-time compu-
tation with our VBR method which mainly uses the GPU.
In addition, MPEG2 decompression is not a problem with
mobile phone hardware.

9.4 Results

We have implemented our system on an Intel Core Duo

1.86 GHz PC with an nVidia GeForce 7900 GTX. The video

acquisition is performed by 4 USB Logitech fusion webcams

connected to the computer via a USB hub. With a 320×
240 resolution, the acquisition frame rate reaches 15 frames

per second.

In our tests, we set the output image resolution to 320×
240. Since our system is designed for stereoscopic display,

the base-line between extreme cameras is restricted. Like

for the tests performed for the single view method, we use

60 planes to ensure an optimal visual quality. Our tests in-

clude image compression and transfer. Since we considered

that the data transfer should be done by the mobile phone

operator, we just tested our compressed video transfer with

a UDP network protocol with another PC. There exist more

powerful tools for such video streaming but this is not the

main purpose of our paper. The video compression is done

by an MPEG2 method and reaches a 1:41 compression rate.

Thus, the transferred data is highly compressed and well

suited to be decompressed by mobile phones.
The number of virtual views depends on the application.

In our case, we tested our system with 6, 9, 12, 15, and 18
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Fig. 11 Sample result of 16 views: 12 virtual views and 4 input images (on the diagonal) (These images have been computed using
60 planes at 8.7 frames per second. Parallel-eyed viewing provides stereoscopic images.)

virtual cameras set between adjacent input cameras. The
speed results obtained with such configuration are shown
in Table 1. This computation includes compression and
transfer of both virtual views and input images. Table 1
also includes the frame rate of the classic method which
computes independently every virtual view.

Table 1 Frame rate and number of virtual views

Number of Number of Frame rate Classic method

virtual views total views (fps) (fps)

6 10 11.2 3.8

9 13 10 2.9

12 16 8.7 2.4

15 19 7.6 1.9

18 22 7 1.6

Our tests indicate that our method provides especially
good results for a large number of virtual views. Compared
to the classic method, our method is at least more than
twice faster for 6 virtual views and is four times faster for
18 virtual views without any loss of quality.

Fig. 11 depicts a sample result for a 12 virtual views con-
figuration. Input images are displayed on the diagonal.
The visual quality of a virtual view varies with its distance

from input cameras and decreases for a virtual view located
exactly between two input cameras. However, autostereo-
scopic display provides two views per user (right and left
eyes) and the fusion of the two images that decreases the
imperfection impact. As shown in Fig. 11, stereoscopic pairs
(parallel-eyed viewing) are very comfortable. In addition,
the base-line between the extreme right and left views are
perfectly suited to autostereoscopic display application.

10 Conclusion

This paper presents an on-line VBR application using
a plane-sweep algorithm that can be implemented on ev-
ery consumer graphic hardware that supports fragment
shaders. Our tests showed that this method combines low-
cost hardware with high performances.

The proposed scoring method enhances the visual qual-
ity of the new views by using all input images together,
while other methods compute images by pair. In addition,
we present a video stream management that extends the
number of potential webcams used to create a new view.
This technique involves a better flexibility of the cameras′

position and increases the visual result. Compared to other
on-line VBR techniques, this method can handle the scene
background, does not require more than one computer and
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provides high quality images.
We also present an adaptation of our plane-sweep method

to provide simultaneously multiple views of a scene from a
small set of webcams. Our multiple view method shares
the 3D data computation for every virtual view and speeds
up the computation time more than four times compared
to the single view method for the same number of new
views. The rendering is on-line and provides high quality
stereoscopic views. This method is especially designed for
autostereoscopic display on mobile phones communicating
with a computer. The use of only one computer and few
webcams makes this system low cost and well suited for
commercial applications, particularly for the latest mobile
phone autostereoscopic displays that require more than 15
images per frame. Based on our knowledge, no other VBR
method exists that provides equivalent result with such a
configuration.

Concerning other extensions of this method, we believe
that our multiple-view system can be easily adapted for
multi-user stereoscopic teleconference applications. The
system would work as a server that provides stereoscopic
views for several clients from desired viewpoints. We also
intend to achieve an optimization on the plane repartition
in order to increase the visual quality without adding any
further planes.
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