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a b s t r a c t

This paper proposes a novel method for synthesizing free viewpoint video captured by

uncalibrated pure rotating and zooming cameras. Neither intrinsic nor extrinsic

parameters of our cameras are known. Projective grid space (PGS), which is the 3D

space defined by the epipolar geometry of two basis cameras, is employed for weak

camera calibration. Trifocal tensors are used to relate non-basis cameras to PGS. Given

trifocal tensors in the initial frame, our method automatically computes trifocal tensors

in the other frames. Scale invariant feature transform (SIFT) is used for finding

corresponding points in a natural scene between the initial frame and the other frames.

Finally, free viewpoint video is synthesized based on the reconstructed visual hull. In the

experimental results, free viewpoint video captured by uncalibrated hand-held cameras

is successfully synthesized using the proposed method.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

In most of the free viewpoint video creation from
multiple camera systems, cameras are assumed to be
fixed. This is guaranteed by mounting the cameras on
poles or tripods for the duration of the capturing, and
calibration is done only before starting video acquisition.
During video acquisition, cameras cannot be moved,
zoomed or rotated. Field of view (FOV) of each camera
in these systems must be wide enough to cover the area in
which the object moves. If this area is large, the moving
object’s resolution in the captured video and in the free
viewpoint video will decrease.

Allowing cameras to be zoomed and rotated during
capture is more flexible in terms of video acquisition.
However, in this case, all cameras must be dynamically
calibrated at every frame. Doing strong calibration at
every frame with multiple cameras is possible by using
ll rights reserved.
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.

special markers [14]. Marker size must be large enough
compared to the scene size to make calibration accurate.
When the capturing space is large, it is unfeasible to use a
huge artificial marker.

In this paper, we propose a novel method for synthe-
sizing free viewpoint video in a natural scene from
uncalibrated pure rotating and zooming cameras. Our
method does not require special markers or information
about intrinsic camera parameters. For obtaining geome-
trical relation among the cameras, projective grid space
(PGS) [28], which is 3D space defined by epipolar
geometry between two basis cameras, is used. All other
cameras are weakly calibrated to the PGS via trifocal
tensors. We approximate background scene as several
planes. Preprocessing tasks including the selection of
2D–2D correspondences among views and the segmenta-
tion of the background are manually done only once at the
initial frames (see Fig. 3). For the other frames, the
homographies that relate these frames to the initial frame
are automatically estimated. Trifocal tensors of the other
frames are then recomputed using these homographies.
Scale invariant feature transform (SIFT) [18] is used for
finding corresponding points between the initial frame
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and the other frame for homography estimation. We
recover the shape of the moving object in PGS by
silhouette volume intersection method [15]. The recov-
ered shape in PGS provides dense correspondences among
the multiple cameras, which are used for synthesizing free
viewpoint images by view interpolation [3].

1.1. Related works

One of the earliest researches of free viewpoint image
synthesis of a dynamic scene is virtualized reality [13]. In
this research, 51 cameras are placed around hemispherical
dome called a 3D Room. The 3D structure of a moving
human is extracted using multi-baseline stereo (MBS)
[24]. Then, free viewpoint video is synthesized from the
recovered 3D model.

Moezzi et al. synthesize free viewpoint video by
recovering visual hull of the objects from silhouette
images using 17 cameras [21]. Their approach creates
true 3D models with small polygons. Each polygon is
separately colored thus requiring no texture-rendering
support. Their 3D model can use standard 3D model
format, such as virtual reality modeling language (VRML),
delivered though the Internet and viewed with VRML
browsers. In terms of computation time, real-time
systems for synthesizing free viewpoint video have also
been developed recently [7,8,23].

Many methods for improving quality of free viewpoint
image have been proposed. Carranza et al. recover human
motion by fitting a human shape model to multiple view
silhouette input images for accurate shape recovery of the
human body [2]. Starck and Hilton optimize a surface
mesh using stereo and silhouette data to generate high
accuracy virtual view images [30]. Saito et al. propose an
appearance-based method [27], which combines the
advantages of image-based rendering and model-based
rendering. Zhang and Chen [33] propose a self-reconfigur-
able cameras array system that captures video sequences
from an array of mobile cameras and renders novel views
on the fly and reconfigures the camera positions to get a
better rendering quality.

In all of the systems mentioned above, calibrated
cameras are used. Cameras in these systems are arranged
to the fixed positions around a scene and calibrated before
capturing video. During video acquisition, the cameras
cannot be moved or zoomed (except using special hard-
ware or markers [33]). FOV of all cameras must be wide
enough to cover the whole area in which the object moves.
If the object moves around a large area, the moving
object’s resolutions in the captured video will be insuffi-
cient to synthesize a good quality free viewpoint image.

The image-based visual hulls method presented by
Matusik et al. [20] is a real-time free viewpoint video
method from uncalibrated cameras (only fundamental
matrices are estimated). This method reconstructs visual
hull of the object using epipolar geometry in image space
instead of 3D space, so it does not suffer from quantiza-
tion artifacts of voxels like in ordinary visual hull. This
method can create new views in real-time from four
cameras. However, this method applies only to the case
where the cameras are fixed.
Eisert et al. [5] propose an automatic method for
Euclidean reconstruction from a sequence of input frames
where camera poses are unknown but the cameras’
intrinsic parameters are previously estimated. Their
algorithm starts by finding an approximate model from
two initial frames which is then used as an approximate
model for cameras pose estimation. After the pose of all
cameras are known, an accurate 3D model is then
reconstructed using volumetric reconstruction.

Pollefeys et al. [25] and Rodriguez et al. [26] present
systems that create 3D surface models from a sequence of
images taken with an uncalibrated hand-held video
camera. The projective structure and motion is recovered
by matching corner features in the image sequence. The
ambiguity on the reconstruction is automatically up-
graded from the projective space to the metric space
through self-calibration. Dense stereo matching is carried
out between the successive frames. The input images
are used as surface textures to produce photo-realistic
3D models.

Another technique for view synthesis from uncali-
brated images is designed to create in-between images
from dense correspondences among two or more refer-
ence images without reconstructing the 3D model
[1,3,29]. In these methods, correspondences between
images are assigned manually or from stereo matching
algorithms.

View synthesis from uncalibrated cameras proposed in
[11,12] are the combination of the image-based and
model-based methods. A 3D model is reconstructed in
PGS [28] instead of the Euclidean space for making dense
correspondence among views, which provide information
for image interpolation in the same way as [3].

In our previous work [11], we proposed that PGS can be
used for synthesizing free viewpoint images from uncali-
brated pure rotation and zoom cameras. We used fixed
PGS, which is defined by two background images of the
whole scene. In [12], we extended [11] by using dynamic
PGS defined by the current frames. PGS defined on
background images covers the whole scene, but PGS
defined on the current frames covers only the current area
of interest. Thus, this gives more accurate 3D reconstruc-
tion result using the same number of voxels.

In both the previous works, fundamental matrices are
used for calibrating non-basis cameras to PGS. Using
fundamental matrices results in point transfer problem
when 3D points lie on the trifocal plane, as will be shown
in Section 3. Hence, in our previous works, we have to
arrange the cameras in a non-horizontal setting.

In this work, we extend the idea from [12] that uses
PGS defined from the current input images instead of the
initial frame. We show that using trifocal tensors give a
more stable result and we can use any camera configura-
tion to render free viewpoint video.
2. Overview

To reconstruct a 3D model without strong camera
calibration, we utilize PGS [28], which is a weak calibra-
tion framework based on epipolar geometry. Fundamental
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matrix and trifocal tensors for weakly calibrating cameras,
can be estimated from 2D–2D correspondences.

Because our cameras are not static, the fundamental
matrices and trifocal tensors must be estimated for all
frames. One straightforward way for calibration is finding
2D–2D correspondences among cameras and compute the
fundamental matrix and trifocal tensors at every frame.
Corresponding points among views can be found by a
keypoint detector and descriptor, such as the SIFT [18].
However, robustness of feature point matching of a 3D
scene dramatically deceases as the viewpoint between the
two images increases [22] because the images of a 3D
Fig. 1. The camera setting in our experiment.

Fig. 2. Example input frame
scene from different views have different appearances due
to motion parallax and perspective distortion.

In pure rotating and zooming cameras, all frames from
the same camera are related to each other by a homo-
graphy matrix. If the fundamental matrix and trifocal
tensors have already been estimated for one frame, we can
compute the fundamental matrix and trifocal tensors of
the other frames using the homography matrices relating
these frames. This is described in Section 4. Finding
correspondences using SIFT for estimating homography is
easier and more robust because the capturing position of
two images are the same. There is no motion parallax
between these images so the two images are more similar.
Accurate corresponding points can be found automatically
using SIFT and the computational cost does not increase
with the complexity of the 3D scene.

From this, we capture the whole background scene
without the moving object at the initial frame of each
camera. Then, two cameras are selected for defining PGS.
The 2D–2D correspondences between cameras at the
initial frame are selected manually (or automatically in
case the number of correct correspondences is enough).
The fundamental matrix and trifocal tensors of the initial
s from four cameras.
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frame are then estimated from these correspondences. To
calibrate the other frames to PGS, homography matrices
between that frame and the initial frame are estimated
from 2D–2D correspondence automatically found using
SIFT. Then, the fundamental matrix and trifocal tensors
are re-estimated.

Fig. 1 shows the camera setting in our experiment. We
use four DV cameras to capture the scene. Each camera is
hand-held without tripod and each person does not
change the position during capture. Because our calibra-
tion method is based on finding corresponding points
with the initial frame, each camera is rotated and zoomed
within the FOV of that frame.

Fig. 2 shows example input frames from each camera.
We can see that each camera changes the view direction
and focal length from frame to frame. The overall process
is illustrated in Fig. 3 where the detail of each process is
explained in the section written in the box. Our main
contribution is the calibration part, which is described in
Section 4. In the rest of the paper, we firstly describe PGS
in Section 3. Then, we present the detailed algorithm of
each step in Section 4–6. Finally, we show the experi-
mental results and conclusion in Sections 7 and 8,
respectively.
P

Q

x (p,q,1)

Basis camera 1

Basis camera 2

l‘e= Fx

Fig. 4. Definition of projective grid space.
3. Projective grid space

This section describes the weak camera calibration
framework for 3D reconstruction. PGS [28] allows us to
define 3D space and to find the projection without
Find
      

Fundamental matrix & 
Trifocal tensors of 
the initial frames

Background planes of 
the initial frames

Preprocess

Runtim

Fig. 3. Overview of
knowing the cameras’ intrinsic parameters or Euclidean
coordinate information of a scene.

PGS is a 3D space defined by the image coordinates of
two arbitrarily selected cameras, called basis camera 1
and basis camera 2. To distinguish this 3D space from the
Euclidean one, we denote the coordinate system in PGS by
P–Q–R axes. Fig. 4 shows the definition of PGS. x and y

axes in the image of basis camera 1 correspond to the P

and Q axes, while x-axis of the basis camera 2 corresponds
to the R axis in PGS.

Homogeneous coordinate X ¼ ðp; q; r;1ÞT in PGS is
projected on image coordinate x ¼ ðp; q;1Þ of the basis
camera 1 and x0 ¼ ðr; s;1Þ of the basis camera 2. x0 must lie
Recover shape from silhouettes
                (Section 5)

Estimate fundamental matrix &
            Trifocal tensors
                (Section 4)

 homography with the initial frame
               ( Section 4)

Images from input videos 

3D model of a moving object 

Render a scene
   (Section 6)

Free viewpoint video

e

our method.
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on the epipolar line of x, so s coordinate of x0 is
determined from x0TFx ¼ 0.

Other cameras (non-basis cameras) are said to be
weakly calibrated once we can find the projection of a 3D
point from the same PGS to those cameras. Either
fundamental matrices or trifocal tensors between the
basis cameras and the non-basis camera can be used for
this task. The key idea is that 3D points in PGS will be
projected onto the two basis cameras first to make 2D–2D
point correspondence. Then, this correspondence is
transferred to a non-basis camera by either the intersec-
tion of epipolar lines computed from fundamental
matrices (Fig. 5) or point transfer by trifocal tensor (Fig. 7).

However, point transfer using fundamental matrices
gives less accurate results if a 3D point lies near the
trifocal plane (the plane defined by three camera centers).
Thus, trifocal tensors are used for weakly calibrating non-
basis cameras in our implementation of PGS. For com-
pleteness, we will explain how 3D points in PGS can be
projected onto the non-basis cameras using fundamental
matrices and discuss the drawbacks first. Then, we will
explain about projecting 3D points in PGS to a non-basis
camera using trifocal tensor.
F31 x

Basis camera 1 Non-basis
camera

Basis
camera 2

R

P

X (p,q,r,1)

x (p,q,1)

x‘ (r,s,1)

F32 x’

l‘e = Fx

Q

P

Q

R

x‘’

Fig. 5. Point transfer using fundamental matrices.

Basis camera 1 Basis camera 2Non-basis cameras

Horizontal camera setting

B

Fig. 6. Camera settings. (a) Bad arrangement of cameras for using epipolar t
3.1. Weakly calibrating non-basis camera using fundamental

matrices

When using fundamental matrices, the fundamental
matrices between the basis cameras and a non-basis
camera are estimated from at least seven point corre-
spondences. The projected point in the non-basis camera
is computed from the intersection of two epipolar line
from the basis cameras. If the projected point in basis
camera 1 and basis camera 2 is x and x0, respectively, the
correspondence in the non-basis camera will be

x00 ¼ ðF31xÞ � ðF32x0Þ (1)

as illustrated in Fig. 5.
However, point transfer using fundamental matrices

will fail when two epipolar lines are collinear. This
happens when point X lies on the trifocal plane. Even
in the less severe case, the transferred point will also
become inaccurate for the points lying near this plane.
This deficiency of point transfer using fundamental
matrices can be avoided by arranging two basis cameras
at different heights from the other cameras, like in
Fig. 6(b). By arranging cameras this way, 3D points in
the scene will not lie on the trifocal plane, and the
intersection of epipolar lines will be well-defined. This
approach is also used in [10–12].

3.2. Weakly calibrating non-basis camera using trifocal

tensor

Trifocal tensor tjk
i is a homogeneous 3� 3� 3 array (27

elements) that satisfies

li ¼ l0jl
00

kt
jk
i (2)

where li; l
0

j and l00k are the corresponding lines in the first,
second and third image, respectively. For more details
about tensor notation, refer to Appendix A.

Trifocal tensors can be estimated from point corre-
spondences or line correspondences between three
images. In case of using only point correspondences, at
least seven point correspondences are necessary to
estimate the trifocal tensor. Given point correspondence
x and x0, we can find corresponding point x00 in the third
asis camera 1 Basis camera 2

Non-basis cameras

Non-horizontal camera setting

ransfer. (b) Good arrangement of cameras for using epipolar transfer.
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Fig. 8. Camera position in projective grid space.
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camera using

x00k ¼ xil0jt
jk
i (3)

where l0 is the line in the second camera that pass though
point x0.

Since, xil0jt
jk
i ¼ 0k and the point x00 is undefined when l0

is the epipolar line corresponding to x. We can choose any
line l0 that pass point x0, except the epipolar line
corresponding to x. A convenient choice for selecting the
line l0 is to choose the line perpendicular to the epipolar
line of x.

To summarize, given a 3D point X ¼ ðp; q; r;1ÞT in PGS
and tensor t defined by basis camera 1, basis camera 2 and
the non-basis camera, we can project point X to the non-
basis camera as follows (see Fig. 7):
(1)
 Project X ¼ ðp; q; r;1ÞT to x ¼ ðp; q;1ÞT and x0 ¼ ðr; s;1ÞT

on basis camera 1 and basis camera 2, respectively. s is
obtained by solving x0TFx ¼ 0.
(2)
 Compute epipolar line l0e ¼ ðl1; l2; l3Þ
T of x on basis

camera 2 from l0e ¼ Fx.

(3)
 Compute line l0 that pass x0 and perpendicular to l0e by

l0 ¼ ðl2;�l1;�rl2 þ sl1Þ
T.
(4)
 The transferred point in the non-basis camera is
x00k ¼ xil0jt

jk
i .
3.3. Camera position in PGS

In Fig. 8, the 3D camera position of basis camera 1 in
PGS is ðC1x;C1y; e12xÞ, where ðC1x;C1yÞ is the camera
center in basis camera 1, and ðe12x; e12yÞ is the epipole of
basis camera 1 in basis camera 2. In the same way, the
camera position of the basis camera 2 is ðe21x; e21y;C2xÞ,
where ðe21x; e21yÞ is the epipole of basis camera 2 in
basis camera 1, and ðC2x;C2yÞ is the camera center in
basis camera 2. For the non-basis camera, 3D camera
position in the PGS is ðe1x; e1y; e2xÞ where ðe1x; e1yÞ and
ðe2x; e2yÞ are epipoles on basis camera 1 and basis camera
2, respectively.
4. Weak camera calibration

To weakly calibrate cameras to PGS, the fundamental
matrix between the two basis cameras, and the trifocal
tensors between the two basis cameras and the other non-
basis camera need to be computed.

For example, in our experiment we use four hand-held
camera inputs as shown in Fig. 2. If we select cameras 1
and 4 to be the basis cameras defining PGS, this means
that we need to compute fundamental matrix between
cameras 1 and 4, and two trifocal tensors defined by
cameras 1, 4 and 2 and cameras 1, 4 and 3, respectively, for
all frames.

Our approach for calibration includes two phases:
preprocessing and runtime. During the preprocessing
phase, we select one initial frame and estimate the
fundamental matrix and trifocal tensors from manually
selected correspondences. During runtime, our method
can compute the fundamental matrix and trifocal tensors
of the other frames automatically.

To demonstrate the process, we will explain the three
camera case. Generalizing to more than three cameras is
straightforward by increasing the number of non-basis
cameras. Let c; c0 and c00 represent the initial frames of
basis camera 1, basis camera 2 and the non-basis camera,
respectively. Let ĉ; ĉ0 and ĉ00 represent the other frames
of the same camera.

4.1. Preprocessing phase

For the initial frames c; c0 and c00, we zoom out all
cameras to capture the whole area of a scene without an
actor. The 2D–2D corresponding points for estimating
fundamental matrix F between c and c0 and trifocal
tensor tjk

i of c; c0 and c00 are assigned manually. Once the
fundamental matrix and the trifocal tensor are estimated,
PGS is completely defined. These images will be used as
the reference image for calibrating the other input frames
to PGS, as will be described in Section 4.2. Fig. 9 shows the
initial frames c;c0 and c00.

4.2. Runtime phase

Let F̂ be the fundamental matrix from ĉ to ĉ0. Let t̂jk
i be

trifocal tensor of ĉ; ĉ0 and ĉ00. We wish to compute F̂ and
t̂jk

i automatically. The straightforward way is to estimate
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from corresponding points among ĉ; ĉ0 and ĉ00. However
finding such correspondences is error prone and difficult
to achieve robustly in cases where the scene is a 3D scene
and the baseline between cameras is large, as shown
in [22].

We assume that the person recording the input video
will not change position during capture. Thus, we may
also assume that each camera is only rotating and
zooming. The image coordinate x; x0 and x00 of c; c0 and
c00 are transformed to the image coordinate x̂; x̂0 and x̂00 of
ĉ; ĉ0 and ĉ00 via homography matrices:

x̂ ¼ Hx (4)

x̂0 ¼ H0x0 (5)

x̂00 ¼ H00x00 (6)

Under these point transformations, the fundamental
matrix F will transform according to

F̂ ¼ H0�TFH�1 (7)

while the trifocal tensor tst
r will transform according to

t̂jk
i ¼ ðH

�1
Þ
r
i H
0j
s H00kt tst

r (8)

For the detailed proof of Eqs. (7) and (8), refer to [9]. From
Eqs. (7) and (8), this means that we can estimate the
fundamental matrix F̂ and t̂jk

i from the homographies
between the initial frame given that the initial F and tjk

i

are known.
In our experiments, we use the implementation for
trifocal tensor estimation from [19]. To estimate homo-
graphy matrix, corresponding points between c;c0;c00

and ĉ; ĉ0; ĉ00 are necessary. We employ SIFT for finding
such correspondences. Example corresponding points that
are automatically found using SIFT are shown in Fig. 10. In
Fig. 10, the left image is the initial frame and the right
image is the other frame which will be calibrated to PGS.
RANSAC [6] is used to reject outliers in correspondences.
The lines show corresponding points that will be used for
estimating homography.

Finding correspondences between two images cap-
tured from the same position but with a change in focal
length and rotation is more robust than finding corre-
spondences between different views. This is because the
two images captured from the same position will not have
motion parallax. This is the motivation behind our
calibration method.

5. 3D reconstruction

In this section, we describe how we reconstruct a 3D
model of a human actor. We use an appearance-based
approach for synthesizing free viewpoint video [27]. An
appearance-based rendering is a combination of model-
based rendering and image-based rendering. The recon-
structed model is used for making a dense correspon-
dence between the two original views for image
interpolation.

We reconstruct a visual hull of a human actor in PGS
using the silhouette volume intersection method [15]. To
get a silhouette of human actor, we have to generate a
virtual background for background subtraction. In the
initial frame, we capture a background scene without
human actor. In the later frames, a homography matrix,
which is estimated for camera calibration as described in
Section 4, is used for warping the initial frame to the
current frame as a virtual background. Then background
subtraction can be done as shown in Fig. 11. The RGB color
I of a pixel p in the input image is compared to the RGB
color Ibg of the same pixel in the warped background
image by computing

y ¼ cos�1 I � Ibg

jIjjIbg j

� �
(9)

d ¼ jI� Ibg j (10)

The pixel p is segmented as a foreground pixel if y4yT or
d4dT where yT and dT are some thresholds. We then
apply morphological operations to reduce the segmenta-
tion errors.
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Each voxel in PGS is projected onto silhouette images
to test voxel occupancy. The surfaces of the volumetric
model are extracted to a 3D triangular mesh model as
shown in Fig. 12 using the Marching cube algorithm [17].
This 3D triangular mesh model will be used for making
dense correspondences for view interpolation.

6. Free viewpoint video rendering

Our method can synthesize free viewpoint video using
interpolation between the two reference views. Free
viewpoint video is rendered in two steps. Background
planes in a scene are rendered first. A moving object is
then rendered and overlaid to the synthesized planes. The
following subsections explain the details of the two
rendering phases.

6.1. Background rendering

Our background scene is represented by several planes.
Fig. 13 shows how we segment background scene.
During preprocessing, the initial frames that we used
for calibration are manually segmented into several
planes. The 3D positions of points that lie on those planes
are reconstructed by specifying the corresponding points
between basis camera 1 and basis camera 2. If ðp;qÞT and
ðr; sÞT are correspondences in basis camera 1 and basis
camera 2, respectively, then the 3D position in PGS of this
point will be ðp; q; rÞT.

These 3D positions in PGS are projected onto both
reference views. The 2D positions of these points on free
viewpoint image are determined using linear interpola-
tion

x

y

 !
¼ w

x1

y1

 !
þ ð1�wÞ

x2

y2

 !
(11)

where w is a weight, ranging from 0 to 1, defining the
distance from the virtual view to the second reference
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view. ðx1; y1Þ
T and ðx2; y2Þ

T are the corresponding points on
the first reference view and the second reference view,
respectively. Corresponding points between the initial
frames of the reference view and the virtual view are used
for estimating a homography. The plane in the background
image that is segmented during preprocessing is warped
to the virtual view. Warped planes from two reference
views are then blended together. In case that the scene
consists of more than one plane, two or more planes in the
virtual view are synthesized in this way and merged
together. Fig. 14 illustrates how the plane is rendered in
the free viewpoint image.

6.2. Moving object rendering

Free viewpoint images of a moving object is synthe-
sized by view interpolation method [3]. The 3D triangular
mesh model in PGS is used for making a dense
correspondence and also for testing occlusion between
the reference images.

To test occlusion of triangular patches, the z-buffer of
each camera is generated. All triangular patches of a 3D
model are projected onto the z-buffer of each camera. The
values in the z-buffer for each pixel store the 3D distance
from the focal point of a camera to the projected
triangular patch. If some pixels are projected by more
than one patch, the shortest distance is stored. The
distance of point aðp1; q1; r1Þ and bðp2; q2; r2Þ in PGS is
defined as

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 � p2Þ

2
þ ðq1 � q2Þ

2
þ ðr1 � r2Þ

2
q

(12)
To synthesize a free viewpoint image, each triangular
mesh is projected onto the two reference images. Any
patch whose distance from the focal point of the input
camera is greater than the value stored in the z-buffer is
decided to be occluded. In the case that a patch is
occluded in both input views, this patch will not be
interpolated in a free viewpoint image. If a patch is seen
from one or both input views, this patch will be warped
and merged into a new view image. The position of
a warped pixel in a new view image is determined using
Eq. (11).

To merge warped triangular patches from two refer-
ence views, RGB colors of the pixel are computed by the
weighted sum of the colors from both warped patches. If a
patch is seen from both input views, the weight used for
interpolating RGB color is the same for determining the
position of a patch. In case that the patch is occluded in
one view, the weight of the occluded view is set to 0 while
the weight of the other view is set to 1. Fig. 15 shows an
example of free viewpoint image of a moving object.
6.3. Hole filling

To combine the background with the moving object,
the free viewpoint image of the moving object is rendered
on top of the background. There might be some holes in
the combined image because of the areas that are not
visible in both reference views. These holes are easily
noticed and also degrade the quality of the final output
video. We use linear interpolation to fill out these holes.
The hole filling process finds holes that are adjacent to
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Fig. 15. Rendering a moving object on a free viewpoint image.

Fig. 16. Hole filling in the interpolated image. The green color pixels are

holes that are not visible in both reference views.
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some color pixels, and then interpolate that hole pixel
using the average of the colors of nearby pixels. The
process will stop when there are no more holes in the
output video. Fig. 16 show an example image before and
after filling holes.
7. Experimental results

In this section, we show our experimental results by
synthesizing free viewpoint video from uncalibrated pure
rotating and zooming cameras using the proposed
method. We use four Sony-DV cameras with 720� 480
resolution. All cameras are hand-held and captured with-
out tripod as in Fig. 1. Note that the cameras used in our
experiments are almost on the same horizontal line,
which is not a suitable camera setting if the fundamental
matrices are used for transferring correspondences
(see Fig. 6). Video synchronization is done during
digitization by Adobe Premiere Pro 2.0 (Adobe Premier
Pro is a registered trademark of Adobe, Inc.).

We synthesize free viewpoint video from 300 con-
secutive frames by our proposed method. During the
capturing process, each cameraman stood still, zoomed
the camera and changed the view direction within the
range of the initial frame independently. We zoom in and
out approximately 1� to 2� . The rotation angle of the
cameras during capture from the left most view to the
right most view is approximately 451. Example input
frames are shown in Fig. 2. There is no artificial markers
placed in the scene. Only natural features are used for
finding corresponding points. After the initial frame, our
method can correctly calibrate all other frames to PGS and
synthesize free viewpoint video without manual opera-
tion. Fig. 17 shows some example frames from the
resulting free viewpoint video.

We select one frame from the input video and create
new view images at several virtual camera ratios as shown
in Fig. 18. The ratio between two views is given under each
frame for different virtual views.
7.1. Subjective evaluation

From the results, we successfully create new view
images from pure rotating and zooming cameras. Even
there are artifacts, such as blurred texture or missing part
of the moving object, overall quality is acceptable given
that only four cameras are used for 3D reconstruction and
the baseline between cameras is large (approximately
1.5–2.0 m). In this section, we give more detailed analysis
of the cause of each artifact and discuss about potential
solutions.

Fig. 19(a) shows that hole filling does not give a
satisfactory result. If a hole appears near a particular
object or dense textures, the result seems to be unconvin-
cing. One possible solution is using information from the
other views (not reference views) to fill holes.

In Fig. 19(b), there are some blurred textures or
ghosting (double imaging) on the moving object in the
synthesized image because of the inaccuracy of the
reconstructed triangular mesh model. If the reconstructed
mesh model is different from the real object, the warped
textures from both reference cameras will be misaligned
in the virtual view.

To reduce blurring or ghosting artifacts, one possible
solution is to improve the accuracy of the 3D model.
The straightforward way is to increase the number
of cameras in the system. The newly added cameras
will carve out the non-object voxels during volumetric
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Fig. 17. Example free viewpoint images from consecutive 300 frames.

Camera 1 80:20 60:40 40:60

20:80 Camera 2 80:20 60:40

40:60 20:80 Camera 3 80:20

60:40 40:60 20:80 Camera 4

Fig. 18. Free viewpoint images from one input frame.

Fig. 19. Artifacts in the resulting new view images.
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reconstruction, so the difference between the reconstructed
shape and the real one will be reduced. However, the
reconstructed visual hull gives only a coarse approximation
to the actual shape of the object (concave areas cannot be
reconstructed). An algorithm for optimizing meshes based
on image textures and silhouettes can be applied [4,32].
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Because the blurred textures occur when blending
intensity of two misaligned textures, another solution is
finding a good seam between textures instead of blending.
Using this method, blurring or ghosting artifacts could be
reduced without optimizing the 3D shape. This approach
has been proposed in [16].

Another factor causing blurred textures is the trifocal
tensor estimation error. Our method for computation is
based on the assumption that the cameras are pure
rotating and zooming. However, to show a practical
application that this method is not limited to the case
where the cameras are perfectly pure rotating like placing
on a tripod, we use hand-held cameras that are held by a
cameraman. Cameraman tries not to move the camera
position, but there is still some handshake or other small
movement. These contribute to the error during camera
calibration.

Imperfect silhouette segmentation cause two kinds of
artifacts: missing parts of the moving object and a hole-
like region in the new view image. Missing parts of the
silhouette images in some views cause missing parts of
Fig. 20. The background area that is missegmented as the foreground causes a

image. (a) Imperfect silhouette. (b) Phantom in a 3D model. (c) Hole-like artifa
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Fig. 21. New view images rendered for evaluating appearance registration error

1. (c) New view image using texture from camera 2. (d) Reference camera 2.
the moving object in the final free viewpoint image. The
background area that is missegmented as the foreground
area causes a phantom (no real object) in the recon-
structed 3D model. This will appear as a hole-like artifact
in the output video, as illustrated in Fig. 20. The color of
this hole-like artifact will depend on the color of the
texture in the reference cameras. Because our background
is a natural scene, a completely clear silhouette is difficult
to achieve using background subtraction.
7.2. Objective evaluation

This section gives objective quality measurements of
our result. We use no-reference (no ground truth)
evaluation method proposed in [31] to measure the error
in registering scene appearance in image-based rendering.
Two new view images at the center (ratio 50:50) between
the two reference cameras are rendered. Each new view
image is rendered using the texture only from the
corresponding reference camera, as shown in Fig. 21.
phantom in the 3D model and cause a hole-like artifact in the new view

cts.

rame
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r of new view images.

s. (a) Reference camera 1. (b) New view image using texture from camera
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Fig. 23. PSNR registration error of new view images.

Table 1
Error measurements for the resulting new view images (average of 100

frames).

Virtual camera between d90
ðpixelsÞ PSNR ðdBÞ

cam1–cam2 4.23 21.29

cam2–cam3 3.94 20.99

cam3–cam4 3.56 20.07

S. Jarusirisawad, H. Saito / Signal Processing: Image Communication 24 (2009) 17–30 29
Two metrics d90 [31] and peak signal to noise ratio
(PSNR) are computed over the overlapping pixels to
measure the registration error in these new view images
(reprojected appearances). d90 tells us about the overall
distance of misaligned pixels between two images. The
lower the value of d90, the better the quality of the output
in new view images. If the rendered image from one
reference camera is much different from the other, then
there will be visual artifacts, like blurred texture or
ghosting in the blended image. We measure these values
for 100 consecutive input frames between every adjacent
cameras. Figs. 22 and 23 show each error metric of our
new view images. Table 1 presents the average d90 and
PSNR values over 100 frames.

8. Conclusion

We proposed a method for synthesizing free viewpoint
video of a moving object in natural scene, which is
captured by pure rotating and zooming cameras. Our
method allows cameras to be zoomed and change view
direction during capture within the field of view of the
initial frames. Trifocal tensors are automatically estimated
every frame, given the already estimated trifocal tensor in
the initial frame. Our weak calibration method is done
without special markers. Experimental results show that
the proposed method is efficient, even when it is applied
to the hand-held cameras with a small movement.

Appendix A. Tensor notation

This appendix gives an introduction to the tensors for
the reader who is unfamiliar with tensor notation. For
more details, refer to [9].
A tensor is a multidimensional array that extends
the notion of scalar, vector and matrix. A tensor is
written using an alphabet with contravariant (upper)
and covariant (lower) indexes. For example, the trifocal
tensor tjk

i has two contravariant indexes and one covariant
index.

Considering a representation of vector and matrix
using tensor notation, entry at row i and column j of
matrix A is written using tensor notation as ai

j, index i

being contravariant (row) index and j being contravariant
(column) index. An image point represented by the
homogeneous column vector x ¼ ðx1; x2; x3Þ

T is written
using tensor notation as xi, while a line represented using
the row vector l ¼ ðl1; l2; l3Þ is written as li.

Writing two tensors together means doing a contrac-
tion operation. The contraction of two tensors produce a
new tensor where each element is calculated from a sum
of product over the repeated index. For example consider
a matrix multiplication x̂ ¼ Ax, this can be written using
tensor notation as x̂

i
¼ ai

jx
j. This notation imply a

summation over the repeated index j as x̂
i
¼
P

j ai
jx

j.
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