Multi-view Rendering using GPU for 3-D Displays

Frangois de Sorbier
Graduate School of Science
and Technology
Keio University,Japan
Email: fdesorbi@hvrl.ics.keio.ac.jp

Abstract—Creating computer graphics based content for
stereoscopic and auto-stereoscopic displays requires to render
a scene several times from slightly different viewpoints. In that
case, maintaining real-time rendering can be a difficult goal if the
geometry reaches thousands of triangles. However, similarities
exist among the vertices belonging to the different views like
the texture, some transformations or parts of the lightning. In
this paper, we present a single pass algorithm using the GPU
that speeds-up the rendering of stereoscopic and multi-view
images. The geometry is duplicated and transformed for the
new viewpoints using a shader program, which avoid redundant
operations on vertices.

Index Terms—multi-view, 3D displays, stereoscopy, real-time,
GPU.

I. INTRODUCTION

Stereoscopy is a technique that enables to watch three
dimensional images on a display thanks, most of the time,
to specific glasses. It has many applications in various fields
such as data visualization, virtual reality or entertainment
because it tends to reproduce our visual perception and makes
information easier to understand. In computer graphics, stereo-
scopic rendering consists in generating two images of a virtual
environment from two slightly different viewpoints. In other
words, it requires to render the geometry of the scene twice
which can double the computational time. In such case, it
can be difficult to maintain real-time rendering especially for
applications like video-games that are complex in term of
geometry and visual effects.

Auto-stereoscopy is a technology recently applied to LCD
displays [1] that introduces the ability for one or several users
to watch stereoscopic images without wearing any glasses.
Depending on their characteristics, auto-stereoscopic displays
require from 5 to 64 images [2] to display a single 3-D frame.
A filter, made of small lenses or precision slits, is overlaid on
the surface of the screen and ensures to emit each image in
a specific direction. So, if the user is well located in front of
the display, each eye can see a single specific image.

However, the important number of required input images
makes rendering difficult to maintain in real-time compared
to a single view rendering. We can state two facts in term of
time for standard multi-view rendering. Firstly, data transfer
from main memory to the graphic card is costly, especially
when no specific data structure, like Vertex Buffer Objects, is
used. Secondly, some operations on vertices remain the same
from one view to another which mean there are redundant

Vincent Nozick
Université Paris-Est LABINFO-IGM
UMR CNRS 8049
France
Email: vnozick@univ-mlv.fr

Hideo Saito
Graduate School of Science
and Technology
Keio University, Japan
Email: saito@hvrl.ics.keio.ac.jp

computations. Global transformations, parts of illumination
calculation and texturing are identical for example.

GPU programming is now very popular because it can
speed-up many algorithms thanks to an efficient parallelized
architecture. Recently, shaders have been updated with a new
feature named geometry shader (GS) that takes place between
the vertex shader and the rasterization stages [3]. Geometry
shader introduces the possibility to manipulate vertices of
input primitives like points, lines or triangles before emitting
the result to the rasterization and clipping stages. It becomes
also possible to generate new primitives during this stage.

The goal of our approach is to exploit geometry shader
to speedup the rendering process of stereoscopic or multi-
view images. The ability of geometry shaders to duplicate
input primitives allows rendering in a single pass. Multiple
sending of the geometry to the graphic card are reduced to a
single transfer. Moreover extra computation due to redundant
operations is avoided since our algorithm take place after the
vertex shader stage.

This paper is structured as follows. We start giving an
overview of related and previous works, and then we present a
description of our approach. In the next section we give details
about the implementation of our algorithm. Finally, we present
and discuss the results of our approach.

II. PREVIOUS WORKS

Several methods have been proposed to overcome the multi-
pass rendering limitation for multi-view rendering of 3-D
information. A point-based rendering solution was proposed
by Hubner et al. [4] using GPU to compute multi-view
splatting, parameterized splat intersections and per-pixel ray-
disk intersections in a single pass. This method reaches 10 fps
for 137k points in a 8-view configuration. To increase multi-
view rendering performance, Hubner and Pajarola [5] present
a direct volume rendering method based on 3D textures with
GPU computations to generate multiple views in a single pass.
These two solutions significantly decrease the computation
time but are not suited for polygon based graphics.

An alternative solution [6] has been proposed by Morvan et
al. a single 2-D image plus a depth map that are interrelated
to display multiple views. Although the algorithm reduces the
bandwidth of data emitted to the system, it does an assessment
over available data to fill the area’s missing information of the
new views and then reduces the content’s truthfulness.

In 2008, de Sorbier et al. [7], [8] introduced a new single
pass algorithm to render stereoscopic and multi-view images
using the GPU. This approach is based on a geometry shader
implementation and uses multiple rendering target extension
(MRT) associated with frame-buffer object (FBO) to save
results in distinct textures. Results show that, in some cases,
the frame-rate can be twice faster than a multi-pass technique.
However, MRT is limited to a single depth buffer shared by all
the rendering targets. This restriction is minimized by sorting
the triangles in a back to front order that increases computation
time. Moreover, hardware constraints limit the number of
output textures to eight while some auto-stereoscopic devices
require nine viewpoints or more. Finally, it is difficult to
integrate this algorithm in an existing application because
existing shaders have to be rewritten.

III. MULTI-VIEW RENDERING ALGORITHM

In this section, we present a GPU-based multi-view render-
ing algorithm that takes advantage of similarities of vertices
among each view and of the geometry shader to speed-up the
rendering process.

A. Overview

By studying the concept of multi-view rendering [9], we
can state that some characteristics remain the same from one
view to another. Position of vertices is unchanged in the
referential of the scene meaning that the same transformation
is shared over the viewpoints. Likewise, texture coordinates,
light vector and normal are identical for a given vertex. So,
each characteristic independent of the viewpoint might be
computed only once in order to increase the performances.
Then, each vertex should be duplicated and shifted according
to a given viewpoint.

In that sense, shaders [10] provide useful functionalities to
merge some operations and duplicate only relevant data. A
vertex shader is designed to apply several independent pro-
cessing on each vertex, while a geometry shader is dedicated
to handle primitives. In particular, this GPU stage allows to
create or remove vertices, to emit new primitives and to apply
transformations. This stage takes place just after the vertex
shader.

B. Our Approach

1) Single texture based approach: Previous works [7],
[8] on GPU-based multi-view rendering demonstrate that it
is possible to considerably speed-up this kind of process.
However, this algorithm is difficult to implement and require
many modifications in the original code. The result of this
approach is rendered into several textures (limited to eight)
thanks to FBO and MRT extensions. One consequence is that
an algorithm like the painter algorithm have to used instead of
the standard depth test of the OpenGL pipeline. It can generate
artifacts or increase computational time.

Our approach have been designed to overcome all these
issues. The solution is to render all the views in one texture
instead of several. In that case, the number of views depends

Texture|sA(0,1) 1SA(1,1) 'SA(2,1)

SA(0,0) 'SA(1,0) ESAtz.o)

| |

T'(0,1) '

Fig. 1. Description of the transformations required to duplicate the geometry
using a single texture.

on the maximal resolution of the texture and the resolution
of the generated views, but remains higher compared to the
previous approaches. Moreover, the depth test can now be used
without any restriction. Finally, only few modifications are
required and are mainly located in the geometry shader code.

In this approach, the different views have to be organized
over the surface of our single texture. Each single space
occupied by a view is named sub-area and defined as SA(%, j)
where 7 and j are the coordinates along the horizontal and
vertical axis as depicted in Fig. 1. We defined the 2-D
vector NV as the number of sub-areas along each axis.
Of course, the total number of rendered views must be
lower than the number of sub-areas. For example, five views
with a resolution of (w,h) will spread over five sub-areas
SA(i,j) where 0 < i < 2 and 0 < 5 < 1. So the number
of sub-areas is then NV = (3,2), the final resolution of
the texture is (3 X w, 2 X h) and one sub-area will not be filled.

2) Geometry Transformation: In OpenGL, the modelview
matrix M is used to transform the geometry into the coordinate
system of the camera. It refers to the extrinsic parameters of
the camera, while the OpenGL projection matrix P refers to
the intrinsic parameters. The rendering is then achieved by
multiplying each vertex, first with the modelview matrix and
after with the projection matrix.

The goal of our approach is to duplicate and shift the input
geometry using the GPU because similarities exist among the
vertices of the different views. One similarity is the modelview

matrix, so we need to apply it only one time on each vertex.
The view shifting can be performed after using the modelview
matrix on each vertex and will consist in a simple translation
on z axis depending on the value of the eye separation distance
A. This translation for the k" generated view will then be
defined as a vector Ty (k) = (k x A,0,0).

Since our rendering context is a single texture then the
input triangles will be transformed and projected on the overall
surface of the texture. So we have to apply extra operations
on the triangles to transform them to fit the bottom-left sub-
area of the texture. All the input views share a common image
plan, so the transformation of the triangles is a 2-D operation
composed of a scaling S and a translation T that are applied
after the normalized OpenGL projection P of vertices. S and
T are then defined as:

1
1 =
1) S NV
1

T=-1+—

TNV

By applying the transformations of Eq. 1, the triangles will
be located in the sub-area SA(0,0) in bottom-left. One more
translation T's 4 is then required to move the duplicated and
shifted triangles into their respective sub-areas.

1
(2) TSA(Zv]):ﬁX2X(7’7J)

The full process is depicted in Fig. 1. Using Eq. 1 and 2, the
process that transforms an input vertex V;,, into the sub-area
SA(i, j) for the view k can be summed up as :

BWsagi,j) = Tsali,j) + TSP x (Ty(k) + M x Vi)
with TSP =T x S x P.

3) Clipping: The clipping stage consists into eliminating
triangles or part of triangles that are not visible in the rendering
area. This process takes place after the rasterization, thus after
the geometry shader. So, no data will be missing when the
triangles will be shifted in the geometry shader. However, it
induces that some triangles will overlap several sub-areas or
will be rendered into an incorrect sub-area instead of being
eliminated. This problem is presented in Fig. 2. It means that
a specific clipping have to be applied just after the geometry
shader stage and will depend on each sub-area borders .

Our clipping is based on the OpenGL user’s defined clipping
using a distance value. In the geometry shader, we compute
the distance between each vertex and the four borders of the
sub-area it should belong. If the distance is negative for one
vertex, then the triangle associated with that vertex will be
automatically clipped by OpenGL.

IV. IMPLEMETATION

This section describes the implementation of our algorithm
using OpenGL 2.1 and GLSL 1.2. The result of our method
is saved in a texture using the Frame Buffer Object extension.

Texture : '

/

N
N\
[AN Y

/
f

Geometry
Transformation

Fig. 2. Some triangles can overlap two different sub-area. A specific clipping
is then required to eliminate undesirable pixels.

A. The Vertex Shader

The goal of the vertex shader is to centralize the common
operations from one view to another one. Eq. 3 shows that the
transformation matrix M (MODELVIEW matrix) is similar for
each vertex. So each vertex can be multiplied with that matrix
during the vertex shader stage. In the same way, normals,
texture coordinates, color, can be defined only one time for
each vertex.

#version 120

#extension GL_EXT_geometry_shader4 : enable

flat varying ivec2 SA;

uniform vec2 NV;

uniform int numberofviews;

uniform float eyesep;

vec2 T = —1.0+1.0/NV;

mat4x4 TSP = mat4x4 (1.0/NV.x,0.0,0.0,0.0,
0.0,1.0/NV.y,0.0,0.0,
0.0,0.0,1.0,0.0,
T.x,T.y,0.0,1.0)x gl_ProjectionMatrix ;

vecd Tv = vec4(—float (numberofviews*0.5)xeyesep ,0,0,0);

0,
Y,

void main(void){
if (mod(numberofviews ,2)==0) Tv.x += eyesep *0.5;
for(int k=0;k<numberofviews;++k){
SA.x = k%int (NV.x);
SA.y = int(floor(k/NV.x));
for(int i=0; i<3; ++i){
vecd tmp = TSPx(Tv+gl_PositionIn[i]);
vec2 coeff = 2.0xNVstmp.w;
gl_ClipDistance [0]=tmp.x+tmp.w;
gl_ClipDistance [l]=coeff.x—(tmp.x+tmp.w);
gl_ClipDistance [2]=tmp.y+tmp.w;
gl_ClipDistance[3]=coeff.y—(tmp.y+tmp.w);
gl_Position = tmp;
gl_Position.xy += SA/NVxtmp.wx*2.0;
EmitVertex ();

EndPrimitive ();
Tv.x += eyesep;

Listing 1. One possible code for the geometry shader

B. The Geometry Shader

In the geometry shader, we apply the transformations pre-
sented in the previous section. The code corresponding to this

step is introduced in listing 1. For each sub-area, vertices of
the input triangles are duplicated and translated according to
the corresponding viewpoint. The result is multiplied with the
OpenGL projection matrix, translated, and scaled to fit the
subareas. All this operations must in homogeneous coordinates
to correspond with OpenGL matrix.

Since transformations are applied in camera’s reference
system, positioning the viewpoint corresponds to a simple
translation on z axis based on the eye separation distance
eyesep. The value T'v is used to define this translation.

To avoid a sub-area to overlap another one, we apply
the clipping at the geometry shader stage. It consists in
defining the distance from the top, left, right and bottom
borders of the corresponding sub-area. OpenGL clipping will
be applied if one of the distances is negative. Of course, this
process requires to activate user clipping planes in the OpenGL
program.

C. The Pixel Shader

The main advantage of our approach is that the pixel shader
does not require any modification. Since our clipping is a
standard operation of the pipeline, it only needs to be set up
in the geometry shader.

So we can applied any kind of per-pixel operation like
illumination per pixel like in Figure 3. Moreover, multi-pass
rendering algorithm are still available like in Figure 4 which
depicted a two-pass toon shading with border. And finally,
Figure 5 presents a simple texturing of surfaces.

V. RESULTS

We experimented our algorithm on a bi-Xeon 2,5Ghz run-
ning Linux. The graphic card is a nVIDIA GeForce GTX 285
with 1Go memory. The algorithm was tested using different
kind of models with various numbers of triangles and graphical
effects. The resolution of each view is 1024 x 768 . No special
data structure like Vertex Buffer Objects was used.

Figure 6 presents the performances obtained using our
approach compared to the standard multi-pass rendering. We
evaluate the results over different number of triangles and
views. If the scene is made of one thousand triangles then
we notice that performances of our algorithm are similar or,

Fig. 3. Himeji Castle, 6 views. 35,200 triangles. Lighting per pixel.

Fig. 4. Kyoto Golden Pavilion, 9 views. 23,400 triangles. Toon shading
effect with borders emphasis.

Fig. 5. Rome from City Engine (procedural.com), 12 views. 86,300 triangles.
Texturing with shaders.

in case of two views, slightly worst compare to the normal
one.

In all other analyzed conditions, performances of our multi-
view rendering are around twice better than the standard
multi-view rendering. Rendering with four view-points shows
that our results can be three time better for more than 5000
triangles. Especially in this case, the differences between two
and four views are small.

Performances are closely dependent of the number of input
primitives. For low number of triangles, our approach is less
effective than the standard one because the number of OpenGL
drawing calls does not exceed the transfer capabilities from the
main memory to the graphic card.

Results are similar for two and four views. So, in Figure 7,
we analyze our rendering algorithm with one to 17 view-points
and 10000 triangles. In the first fourth cases, performances are
quite similar then after, an important drop in frame-rate occurs
until 13 view-points. Finally, performances seem to become
stable again. We think that under a given amount of data, a

1000 triangles

5000 triangles

10000 triangles

B Our approach
M Standard

Number of views

20000 triangles

40000 triangles

20000 triangles

'“"'"11'1111‘11“"|d

o

20 40 60 80
FPS

100 120 140 160

Fig. 6. Performances of our approach compared to the standard one. Tests
are applied with various numbers of views and triangles.

%20
0 ““ll‘llllllllll

2345678 91011121314151617

Number of views

3 B2

FPS
E 8 52 2

=k
=

Fig. 7. Frame-rate of our approach on a scene with 10,000 triangles in
function of the number of views.

geometry shader can parallelize operations but it will become
a bottleneck in the other case.

The frame-rate for one view is less than the one for two
views. This is because our algorithm apply some operations
that are useful for multi-view rendering but make no sense for
a single view.

VI. CONCLUSION

We have presented an algorithm to generate stereoscopic
and multi-view images using the GPU in a single pass. We take
advantage of the geometry shader to speed-up the rendering
process by duplicating the geometry on the graphic card and

avoiding redundant computations. Our algorithm overcomes
the limitations introduced in previous works, such as shared
depth buffer and restrictions on the number of output-views.
Moreover, the implementation of this approach is now simpli-
fied.

We generate all the views on a single texture which requires
only one depth buffer. We explained the transformations ap-
plied on the input triangles to duplicate and spread them over
the single texture. We also introduced a solution based user’s
defined clipping plane to easily resolve the clipping problems
when a duplicated triangle overlaps two views.

The results showed that performances of our approach vary
according to the number of triangles and views. The algorithm
is efficient when it processes more than 1000 triangles other-
wise, benefits of the geometry shaders are under-exploited.
We also noticed that the frame-rate is quite similar to render
two, three or four views but decreases while rendering more
views because geometry shader becomes a bottleneck. But our
approach always remains better than the standard multi-pass
rendering. Results are two times higher or even three times
for example in case of four views rendering.

In future, we can expect better results using our approach
since the reason of the main limitation is the hardware
bottleneck at the geometry shader stage. Future graphic cards
should be able to be fully compliant with our multiple-view
rendering algorithm.

ACKNOWLEDGMENT

Part of the work presented in this paper was supported by
the FY2009 Postdoctoral Fellowship for Foreign Researchers
from the Japan Society for Promotion of Science (JSPS) and
by the National Institute of Information and Communications
Technology (NICT).

REFERENCES

[1] N. A. Dodgson, “Autostereoscopic 3d displays,”
no. 8, pp. 31-36, 2005.

[2] Y. Takaki, “High-density directional display for generating natural three-
dimensional images,” in Proceedings of the IEEE, vol. 94, no. 3, 2006,
pp. 654-663.

[3] B. Lichtenbel and P. Brown, “Ext_gpu_shader4 extensions specifica-
tions,” NVIDIA, 2007.

[4] T. Hiibner, Y. Zhang, and R. Pajarola, “Multi-view point splatting,” in
GRAPHITE, 2006, pp. 285-294.

[5] T. Hiibner and R. Pajarola, “Single-pass multi-view volume rendering,”
in IADIS, 2007.

[6] Y. Morvan, D. Farin, and P. H. N. de With,
bit-allocation for multi-view video compression,”
Symposium (PCS), to appear, 2007.

[71 F. de Sorbier, V. Nozick, and V. Biri, “Accelerated stereoscopic
rendering using gpu,” in 16th International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision’2008
(WSCG’08), ser. ISBN 978-80-86943-16-9, Feb. 2008. [Online].
Available: http://wscg.zcu.cz/wscg2008/wscg2008.htm

[8] F. de Sorbier, V. Nozick, and V. Biri, “Gpu rendering for autostereo-
scopic displays,” in 4th International Symposium on 3D Data Process-
ing, Visualization and Transmission (3DPVT’08), Jun. 2008, electronic
version (7 pp.).

[9]1 N. Dodgson, “Autostereoscopic 3D displays,”

pp- 31-36, 2005.

R. J. Rost, OpenGL(R) Shading Language (3rd Edition).

Wesley Professional, July 2009.

Computer, vol. 38,

“Joint depth/texture
in Picture Coding

Computer, vol. 38, no. 8,

[10] Addison-

