Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

UAL

Communication &

IMAGE

Representation

+ Editors-in-Chief
* Yehoshua Y, Zeevi

. C-C Jay Kuo

sene

Available onling al wew sciencedirec com

*3%ScienceDirect

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

J. Vis. Commun. Image R. 21 (2010) 577-585

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier.com/locate/jvci o

Real-time video-based rendering from uncalibrated cameras using plane-sweep

algorithm

Songkran Jarusirisawad **, Vincent Nozick®, Hideo Saito?

4 Department of Information and Computer Science, Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
b Institut Gaspard Monge, Université Paris-Est Marne-la-Vallée, Cité DESCARTES, 5 Boulevard Descartes, 77454 Marne-la-Vallée Cedex 2, France

ARTICLE INFO ABSTRACT

Article history:

Received 1 August 2009
Accepted 12 January 2010
Available online 25 January 2010

Keywords:

Video-based rendering

Free viewpoint video
Plane-sweep

Projective grid space

Real-time

Graphics processing unit (GPU)
View interpolation
Uncalibrated cameras

of our proposed method.

In this paper, we present a new online video-based rendering (VBR) method that creates new views of a
scene from uncalibrated cameras. Our method does not require information about the cameras intrinsic
parameters. For obtaining a geometrical relation among the cameras, we use projective grid space (PGS)
which is 3D space defined by epipolar geometry between two basis cameras. The other cameras are reg-
istered to the same 3D space by trifocal tensors between these basis cameras. We simultaneously recon-
struct and render novel view using our proposed plane-sweep algorithm in PGS. To achieve real-time
performance, we implemented the proposed algorithm in graphics processing unit (GPU). We succeed
to create novel view images in real-time from uncalibrated cameras and the results show the efficiency

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Conventional 2D video provides a fixed viewpoint of the re-
corded event that viewers can only see a video playback passively.
Viewpoint of a video playback is always the same as how the scene
was recorded. In contrast, free viewpoint video is a system for
viewing a video of a real-world event, allowing the user to control
the viewpoint and generate new views of a dynamic scene from the
desired 3D position. This means that each viewer of the same con-
tent may be observing from a unique viewpoint.

Most of the proposed video-based rendering (VBR) methods for
creating free viewpoint video usually assume that cameras are
strongly calibrated, i.e. cameras’ internal parameters such as opti-
cal axis, focal length are assumed to be known.

In this paper, we present a new online VBR method that creates
new views of the scene from uncalibrated cameras. Our contribu-
tion is the use of uncalibrated cameras with the plane-sweep algo-
rithm. We obtain geometrical relation among the cameras from
projective grid space (PGS) [1] framework. Our proposed plane-
sweep algorithm in PGS, which is implemented on graphics pro-
cessing unit (GPU), can create new views in real-time. In the con-
ventional plane-sweep algorithm for strongly calibrated cameras,
the near and far planes that bound the reconstructed volume are

* Corresponding author.
E-mail addresses: songkran@hvrl.ics.keio.ac.jp, kpriony@hotmail.com (S. Jarusir-
isawad).

1047-3203/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jvcir.2010.01.005

measured and defined from the actual 3D positions of a scene.
The advantage of our proposed plane-sweep algorithm in PGS is
that these planes are easily defined and can be visualized from
the image of basis camera 2.

In the following sections, we firstly give a survey of previous
works of VBR methods. Then projective grid space framework that
we use for weak camera calibration is explained in Section 3. We
describe conventional plane-sweep algorithm in the Euclidean
space and our proposed plane-sweep algorithm in PGS in Sections
4 and 5, respectively. Section 6 presents the implementation detail
in GPU. Finally, we show the experimental results and conclusion.

2. Previous works

Image-based rendering (IBR) is the process for creating a new
view from several input images of a static scene. VBR can be
thought as an extension of IBR to the dynamic scene. Compared
to IBR techniques, methods for VBR involve challenging problems
to reach a real-time rendering while a number of input images
need to be processed. Hence, time consuming algorithms which
seem to be practical for IBR will be not suitable for VBR.

We may categorize VBR techniques into off-line and online
methods. In the off-line ones, input videos are recorded before
hand, rendering begins only after the scene information has been
extracted from the input videos. This processing time can be long
which increases the time between acquisition and rendering.
Off-line techniques can handle a large amount of data and use

578 S. Jarusirisawad et al./]. Vis. Commun. Image R. 21 (2010) 577-585

sophisticated algorithms because only the rendering part should
be done in real-time since the prior processing can be computed
off-line. In the online VBR methods, 3D data extraction should be
performed in real-time. Since running time is a critical criterion
for online VBR methods, sophisticate or time consuming scene
reconstruction algorithms are usually not applicable.

2.1. Off-line video-based rendering

One of the earliest VBR method is the Virtualized Reality pro-
posed by Kanade et al. [2]. In that research, 51 cameras are placed
around hemispherical dome called 3D room to transcribe a scene.
3D structure of a moving human is extracted using multi-baseline
stereo [3]. Then free viewpoint video is synthesized from the
recovered 3D model.

Immersive video system proposed by Moezzi et al. [4] use three
to six synchronized cameras to capture different viewpoints of a
scene. The static portion of the scene (background) is first manu-
ally built. Dynamic objects are extracted as voxel representations
using volume intersection technique. All models construction in
this system is done off-line.

Zitnick et al. [5] generated high quality new view images in
real-time from eight cameras. Color segmentation-based stereo
algorithm is used to generate photo consistent correspondences.
Mattes for areas near depth discontinuities are automatically ex-
tracted to reduce artifacts, then rendering is performed with a lay-
ered image representation. Their proposed stereo algorithm, while
very effective, is not fast enough for the entire system to operate in
real-time.

Carranza et al. [6] recover human motion at off-line process by
fitting a human shaped model to multiple view silhouettes. Multi-
view texturing is employed during rendering and it can run at real-
time frame rates using conventional graphics hardware. Starck and
Hilton [7] also recover a human model using silhouettes together
with stereo correspondences and feature cues which are manually
selected from the image.

Jarusirisawad and Saito [8] proposed free viewpoint video from
uncalibrated pure rotating and zooming cameras. Using rotating
and zooming cameras allow cameraman to capture the area of
interest at higher resolutions. Their contribution is the method to
weakly calibrate these non-static cameras from natural features
in a scene. They synthesize free viewpoint video of a foreground
moving object from conventional visual hull. The limitation of this
method is that the background must be approximated as several
planes which is not applicable to all scenes and user has to seg-
ment these planes manually at the initial frame. Long computation
time of finding corresponding features and 3D reconstruction
makes the system not fast enough to run in real-time.

Proposed systems in off-line VBR category cannot get a real-
time processing for the whole process mainly because they are
dealing with a large number of cameras (ranging from tens to hun-
dred) [2,9], manual preprocessing is needed [4,7,8], or they are
focusing on the quality of the generated image rather than the pro-
cessing time [6].

2.2. Online video-based rendering

Only a few VBR methods reach online rendering. Complex algo-
rithms used in off-line methods are simply too slow for real-time
implementation. Therefore, the generated new view images from
online methods might have less accuracy comparing to the off-line
ones.

One of the popular online VBR methods is the visual hulls algo-
rithm. The 3D shape of the object is approximated by the intersec-
tion of the projected silhouettes. There are some online
implementations of the visual hulls algorithm [10-13]. Among all

these visual hulls methods, the image-based visual hulls presented
by Matusik et al. [13] is a VBR method from uncalibrated cameras.
This method reconstruct visual hull of the object using epipolar
geometry in an image space instead of the 3D space. The main draw-
backs of all visual hulls methods are the impossibilities to recon-
struct concave objects and handle the background of the scene.

Yang et al. [14] use a distributed light field for online rendering
from 64-camera device based on a client-server scheme. The cam-
eras are clustered into groups controlled by several computers.
These computers are connected to a main server and transfer only
the image fragments needed to compute the requested new view.
This method provides real-time rendering but requires at least
eight computers for 64 cameras and additional hardware.

Schirmacher et al. [15] presented a system for reconstructing
arbitrary views from multiple images with depth using a general-
ized Lumigraph data structure and a warping-based rendering
algorithm. With their technique, it is possible to render arbitrary
views of dynamic, non-diffuse scenes at interactive frame rates.

Some plane-sweep implementations achieve online rendering
using graphics processing unit (GPU). The plane-sweep algorithm
introduced by Collins [16] was adapted to online rendering by
Yang et al. [17]. They computed new views in real-time from five
cameras using four computers. Geys et al. [18] also used a plane-
sweep approach to recover the scene geometry and rendered
new views in real-time from three cameras and one computer.
Nozick and Saito [19] introduced a plane-sweep implementation
for moving camera where all the input cameras are calibrated in
real-time using ARToolkit [20] markers.

Our method belongs to the online VBR group based on plane-
sweep algorithm. The main difference is that in the previous works
[16-19] they assume that cameras are strongly calibrated. Our
contribution is the use of plane-sweep algorithm with projective
grid space to achieve free viewpoint video system from uncali-
brated cameras. This paper, as an extension of [21], presents a
new method for online video-based rendering from uncalibrated
cameras using plane-sweep algorithm in projective grid space.

Our method in this paper is also based on the use of projective
grid space as in [8]. However, our contribution is different from
[8]. In this paper, we focus on the 3D reconstruction and render-
ing algorithm for uncalibrated cameras that can run in real-time
and do not need the assumption about the scene (planar back-
ground, single moving object) as in [8]. Even plane-sweep algo-
rithms has been proposed in the literatures, to our best
knowledge, they were applied to calibrated cameras. Using
plane-sweep algorithm in projective grid space also has several
advantages over conventional plane-sweep in the Euclidean
space. By using PGS, our method create new view image in with-
out information about intrinsic parameters. Near and far planes in
PGS for doing plane-sweep are easily defined and visualized from
basis camera 2. These planes must be specified in 3D world coor-
dinates if the plane-sweep algorithm in the Euclidean space (cal-
ibrated cameras) is used.

3. Projective grid space

This section describes weak cameras calibration framework for
our plane-sweep method. To implement the plane-sweep algo-
rithm, we need to project 3D points into image frame of each cam-
era including the virtual one. Projective grid space allows us to
define that 3D space and find the projection without knowing cam-
eras intrinsic parameters or Euclidean information of a scene.

Projective grid space (PGS) [1] is a 3D space defined by image
coordinate of two arbitrarily selected cameras called basis camera
1 and basis camera 2. To distinguish this 3D space from the Euclid-
ean one, we denote the coordinate system in PGS by P-Q-R-axis.
Fig. 1 shows the definition of PGS. The x and y-axes in the image

S. Jarusirisawad et al./]. Vis. Commun. Image R. 21 (2010) 577-585 579

X parn)
I lke
x (P,)\ g{/ camera 2
{
basis camera 1 non-basis
camera

Fig. 1. Definition of projective grid space.

of basis camera 1 corresponds to the P- and Q-axes, while x-axis of
the basis camera 2 corresponds to the R-axis in PGS.

Homogeneous coordinate X = (p,q,r,1)" in PGS is projected on
image coordinate X = (p,q,1) and X' = (r,s,1) of the basis camera
1 and the basis camera 2, respectively. Because x and x’ are the
projection of the same 3D point, X’ must lie on the epipolar line
of x. Thus, s coordinate of X' is determined from x"Fx = 0 where
F is the fundamental matrix from basis camera 1 to basis camera 2.

Other cameras (non-basis cameras) are said to be weakly cali-
brated once we can find the projection of 3D point from the same
PGS to those cameras. The key idea is that 3D points in PGS will be
projected onto both two basis cameras first to make 2D-2D point
correspondence. Then, this correspondence can be transferred to
a non-basis camera.

In the original work of projective grid space [1], fundamental
matrices were used to transfer these correspondences. However,
point transfer using fundamental matrices will become numerical
instable if a 3D point lies near the trifocal plane. To overcome this
problem, we extend the proposed method by using trifocal tensor
instead.

Trifocal tensor ‘E{" is a homogeneous 3 x 3 x 3 array (27 ele-
ments) that satisfies
I = [Tl 1)
where [;,I; and [;; are corresponding lines in the first, second and
third image, respectively.

Trifocal tensor can be estimate from point correspondences or
line correspondences between three images. In case of using only
points correspondences, at least seven point correspondences are
necessary to estimate the trifocal tensor using the normalized lin-
ear algorithm [22].

Given point correspondence x and X/, we can find corresponding
point X” in the third camera by Eq. (2).
1k _ Xilj/'T],:k (2)
where I is the line in the second camera which pass though point x'.

We can choose any line I’ which pass point X’ except the epipo-
lar line corresponding to x. If I is selected as the epipolar line cor-
responding to X, then point X" is undefined because x'[7}* = 0¢. A
convenient choice for selecting the line I is to choose the line per-
pendicular to epipolar line of x.

To summarize, considering Fig. 1, given a 3D point
X = (p,q,r,1)" in PGS and tensor 7 defined by basis camera 1, basis
camera 2 and non-basis camera we can project point X to non-ba-
sis camera as the following:

X

1. Project X = (p,q,r,1)" tox = (p,q,1)" and X’ = (r,s,1)" on basis
camera 1 and basis camera 2, respectively. s is found by solving
xTFx = 0.

2. Compute epipolar line l’e = (11,12,13)T of X on basis camera 2
from I, = Fx.

far

near

cam1 cam4

Fig. 2. Plane-sweep algorithm in the Euclidean space.

3. Compute the line I' which passes x’ and perpendicular to I, by
ll = (127—117—7‘12 +Sl1)T.)
4. The transferred point in non-basis camera is X" = x"l}T’ik.

4. Plane-sweep in the Euclidean space

This section explains the general idea of conventional plane-
sweep algorithms in the Euclidean space of the calibrated cameras.
Then, we present our proposed one for using with projective grid
space in Section 5.

The plane-sweep algorithm creates novel views of a scene from
several input images. Considering a scene where the objects are
exclusively Lambertian surfaces, the viewer should place the virtual
camera cam, somewhere around the real video cameras and define
a near plane and a far plane such that every object of the scene lies
between these two planes. Then, the space between near and far
planes is divided into several parallel planes 7, as depicted in Fig. 2.

Plane-sweep algorithm is based on the following assumption: a
point lying on a plane 7, whose projection on every input camera
provides a similar color will potentially correspond to the surface
of an object. Considering a visible object of the scene lying on
one of these plane m, at a point P, this point will be seen by every
camera with the same color, i.e. the object color. Now consider an-
other point P’ lying on a plane but not on the surface of the visible
object, this point will probably not be seen by the capturing cam-
eras with the same color.! Fig. 2 illustrates this principal idea of the
plane-sweep algorithm.

During the new view creation process, every plane m; is com-
puted in a back to front order. Each point P of a plane 7 is pro-
jected onto the input images. A score and a representative color
are the computed according to the matching of the colors found.
A good score means every camera see a similar color. The com-
puted scores and colors are projected onto the virtual camera
cam,. The pixel color in the virtual view will be updated only if
the projected point p provides a better score than the current
one. Then the next plane 7, is computed. The final new view im-
age is obtained once every plane has been computed. This method
is detailed on [23].

1 For interpretation of the references to color in Fig. 2, the reader is referred to the
web version of this paper.

580 S. Jarusirisawad et al./]. Vis. Commun. Image R. 21 (2010) 577-585

5. Plane-sweep in projective grid space

To do plane-sweep in PGS, we need to define a position of vir-
tual camera, define planes in 3D space and then compute a new
view image from the defined planes. In this section, we describe
the detail of each step.

5.1. Defining virtual camera position

To perform plane-sweep algorithm, 3D point on a plane must be
able to project to a virtual camera. In the calibrated cameras cases,
projection matrix of a virtual camera can be defined from camera’s
pose (extrinsic parameters) because intrinsic camera parameters
are known. This allowing virtual camera to be moved anywhere
around a scene.

In our case where PGS is used, intrinsic parameters of any cam-
era are unknown. Method for defining virtual camera in calibrated
case is not applicable to our case. In our method, the position of the
virtual camera is limited to only between two real reference cam-
eras. A ratio r from 0 to 1 is used for defining distance between
these reference cameras. Fig. 3 illustrate this definition. In Fig. 3,
a ratio r equals to O (respectively 1) means the virtual camera
has the same position as camera 1 (respectively camera 2).

To find the projection of 3D point X in PGS on a virtual camera,
3D point X is projected onto both real reference cameras first. The
position of the same 3D point in the virtual camera is calculated
using linear interpolation. If the projected points in the real refer-
ence cameras 1 and 2 are x; and X, respectively, the projected
point X3 in a virtual camera is calculated from (3) as in Fig. 3.

Xs=(1-1)X +1X 3)

5.2. Defining planes in PGS

Any arbitrary near and far planes in PGS can be defined for doing
plane-sweep. In our method, we define the planes along the R-axis
(x image coordinate of basis camera 2) as shown in Fig. 4. This ap-
proach makes the 3D near and far planes adjustment become easy
since we can visualize them directly from the image of basis cam-
era 2. This is impossible for the case of the normal plane-sweep
algorithm in the Euclidean space in which full calibration is used.
In that case, actual depth of a scene has to be measured so that near
and far planes cover all volume of interest.

In our approach, basis camera 2 will not be used for color con-
sistency testing during perform plane-sweep because every plane
would be projected as a line in this image. So the basis camera 2
is needed only for weakly calibrated cameras to PGS, after that
we can disable it to save CPU time.

R
P
) G-
o] o o © o
X4 X2 X3 Xq X2
cam1 cam2
r 1-r
cam

Fig. 3. Defining virtual camera in projective grid space.

far

near

p o\ Basis camera2
cam,

Fig. 4. Defining planes for doing plane-sweep in projective grid space.

g

Basis camera1

5.3. Computing new view images

In this section, we explain how we implemented the plane-
sweep algorithm after defining the virtual camera’s position and
planes in PGS. If pixel p in a virtual camera is back projected to a
plane 7, on a point P, we want to find the projection of P on every
input image for the score computation step. As illustrated on Fig. 5,
the projection of 3D point P lying on 7, on the input image i can be
performed by a homography H;. Thus, the projection p; of a 3D
point P on the camera i is calculated from
x; = HH,'x (4)
where x and x; are the position of the pixel p and p;, respectively.

Homography H;, where i is a camera number, can be estimated
from at least four point correspondences. In our situation, we select
four points defined as the image corners of the basis camera 1 as
shown in Fig. 5. Then, we project these points onto every real cam-
eras as described in Section 3 for making 2D-2D point correspon-
dences. Then, all homographies used for the plane-sweep method
can be estimated from these correspondences. During the score
computation, we estimate these homographies instead of project-
ing every 3D points one by one for computation time purpose.

Algorithm 1 summarizes our plane-sweep algorithm in PGS.

Reset color consistency score of the virtual camera to the max
value.

Algorithm 1. Plane-sweep algorithm in projective grid space.

for each plane 7, in PGS do
for each pixel p in cam, do

e project pixel p to n input images excluding basis camera 2. ¢;
is the color from this projection on the jth camera

» compute average color: color, =137, | ¢

e compute color consistency score
score, =3 i g a(G — color,)?

If score, is low than current score of pixel p then
update score and color on virtual camera to
score, and color,

end

from variance:

end
end

In Algorithm 1, we use the score function proposed in [23].

S. Jarusirisawad et al./]. Vis. Commun. Image R. 21 (2010) 577-585 581

cam1

Fig. 5. Estimating homography matrices for plane-sweep

6. Implementing real-time plane-sweep on GPU

To achieve real-time computation, we implement our plane-
sweep algorithm in projective grid space on GPU. Because GPU
has a massive parallel processing, using GPU can give much more
computation power in many applications comparing to CPU.
This section gives some details about our implementation. We
use OpenGL for the rendering part. Input images that will be used
for color consistency checking are transfer to GPU as multi-
textures. In the drawing function, we loop though each plane in
PGS from near to far plane. Homographies for warping points on
virtual camera to the other cameras are sent to GPU as texture
matrices.

We use orthographic projection and draw square to cover the
whole image of virtual camera. In the fragment shader, we apply
the homography and compute the color consistency score as de-
scribed in Algorithm 1. Fragment color is assigned to be an average
color from all views. The score of fragment is sent to the next ren-
dering pipeline (frame buffer operation) via gl_FragDepth while
the average color is sent via gl_FragColor. Then we let OpenGL se-
lect the best scores with the z-test and update the color in the
frame buffer. When rendering is done for all planes, we get novel
view in the frame buffer.

7. Experimental results

We tested our proposed method on PC Intel(R) Core(TM) 2 Duo
3.00 GHz CPU with graphic card NVIDIA Quadro FX 570. Six Logi-
tech webcams with a resolution 320 x 240 are used to capture in-
put videos. The camera setting is depicted by Fig. 6. We select two
cameras for defining projective grid space, as illustrated by Fig. 6.
Our result is available online at http://www.hvrl.ics.keio.ac.jp/
~songkran/jvci/index.html.

Fundamental matrix between cameras 1 and 6, four trifocal
tensors defined by camera 1,6,2, camera 1,6,3, camera 1,6,4 and
camera 1,6,5 are estimated for weakly calibrating cameras to
PGS. 2D-2D correspondences for estimating fundamental matrix
and trifocal tensors can be automatically extracted from natural
feature points in a scene. In our experiment, we wave marker
around a scene and track features for accurate 2D-2D correspon-
dence. We use the code for estimating trifocal tensors from [24].

7.1. Running time

Running time and quality of new view image rendering depend
on complexity of a scene and the number of planes used in plane-
sweep algorithm. The appropriate number of planes varies depend-
ing on the complexity of a scene. Using more planes makes pro-
cessing time become longer but usually gives a better result. In
our experiment, it is shown that using 40 planes or more makes
the visual result becomes satisfied.

Table 1 shows the number of planes and the running time for
rendering new view images using six webcams implemented on
CPU and GPU. Both implementations are tested on the same PC.
Implementation of our proposed plane-sweep algorithm on GPU
is significantly faster than on CPU. Our system gives the same
frame rates as the input webcams (30 fps) when using 25 planes
or less for scene reconstruction. When implementing plane-sweep
algorithm on GPU, most of the computation is done by the graphic
card, hence the CPU is free for the video stream acquisition and the
virtual camera control.

7.2. Qualitative evaluation

We do our plane-sweep algorithm in PGS as described in Sec-
tion 5. In our experiment, planes are defined from x-axis of basis

Fig. 6. Camera configuration.

582 S. Jarusirisawad et al./]. Vis. Commun. Image R. 21 (2010) 577-585

Table 1
Frame rates (frame/s) of our plane-sweep algorithm implemented on CPU and GPU.

Number of planes

25 40 60 80
CPU 0.199 0.130 0.089 0.068
GPU 30.04 15.03 12.00 8.58

camera 2 (corresponds to R-axis in PGS). near and far planes are ad-
justed so that all objects in the other cameras lie between these
planes. Fig. 7 shows new view images synthesized from our pro-
posed method using the different number of planes for scene
reconstruction.

Some artifacts in the rendered view come from planes discreti-
zation. The object that lies between two planes is sometimes
reconstructed at the plane that is far from the actual one, so this
object will be noticed as artifacts in the rendered view. One possi-
ble solution to reduce this errors is to increase the number of
planes used in plane-sweep algorithm.

Fig. 8 shows the result new view video at several view point
from the selected one input frames. We use 80 planes for recon-
structing the scene and our implementation can reach about
9 fps using this configuration. The ratio written under each figure
is a virtual camera position between two real reference cameras
as described in Section 5.1. The result shows that our method gives
a good visual quality and fast enough for online VBR applications.

7.3. Quantitative evaluation

This section gives objective quality measurements of our re-
sult. One camera is selected as a ground-truth reference and ex-

40 planes

60 planes

80 planes

Planes

cluded from the plane-sweep algorithm. View at ground-truth
camera is then synthesized to measure visual errors. Two metrics
d% proposed in [25] and peak signal-to-noise ratio (PSNR) are
computed to measure the errors in the synthesized images. d°°
tells us about the overall distance of misaligned pixels between
synthesized image and ground-truth reference. The lower the va-
lue of d°°, the better the quality of the output in new view
images.

If the rendered image is much different from the ground-truth,
then there will likely be visual artifacts or blurred textures in the
synthesized image. We measure these values for 100 consecutive
input frames using camera 3 as a ground-truth reference. Camera
3 is leaved-out from plane-sweep algorithm and views at that cam-
era are synthesized. Figs. 9 and 10 show each error metric of our
new view images using the different number of planes for scene
reconstruction. Table 2 shows the average d°° and PSNR values
over 100 frames.

7.4. Effect of the base-line between cameras

The quality of new views depends on several factors, such as
complexity of a scene, the number of planes and the base-line be-
tween cameras. This section experiments about the effect of the
base-line between cameras with our method.

To compare the result between small and wide base-line, we
use the same input images as Fig. 8 and in crease the base-line
by exclude camera 2 and camera 4 from plane-sweep algorithm.
Fig. 11 shows the result free viewpoint images.

Fig. 12 shows the comparison of new views generated from
wide and small base-line cameras configuration. From the results

Rendered view

Fig. 7. Result new view images using the different number of planes in plane-sweep algorithm.

S. Jarusirisawad et al./]. Vis. Commun. Image R. 21 (2010) 577-585

camera 1

camera 3

camera 4 03:07

camera 5 camera 6
(defining planes)

Fig. 8. New views produced by our proposed plane-sweep algorithm in projective grid space using 80 planes.

9.50

— 850 i

n

.g 7.50 MVI\ A [=

o= 650

(=]

i IRV.Y
450 ——40 Planes ——60 Planes ——80 Planes l_
3.50 -

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Frame

Fig. 9. d°° Registration error of new view images.

we can see that artifacts increase with the base-line of cameras.
Normally plane-sweep algorithms both for calibrated cases and
uncalibrated case (this paper) give a good result when base-line
between cameras is small.

PSNR (dB)

0.5

26.50
25.50
24.50
23.50
22.50
21.50

20.50 +

19.50
18.50
17.50

:0.5 0.7:0.3

N
et
<

| 1=

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Frame

75 80 85 90 95

Fig. 10. PSNR registration error of new view images.

583

Table 2

Error measurements for the resulting new view images (average of 100 frames).
Number of planes d*° (pixels) PSNR (dB)
40 5.970 21.670
60 5.857 22.092
80 5.810 22314

584 S. Jarusirisawad et al./]. Vis. Commun. Image R. 21 (2010) 577-585

camera 1

camera 3 0.3:0.7

camera 6
(defining planes)

camera 5

0.7:03

Fig. 11. New views produced by our proposed plane-sweep algorithm in projective grid space using 80 planes.

|

Result from small base-line cameras

Result from wide base-line cameras

Fig. 12. Comparison of new views from small base-line and wide base-line cameras configuration.

8. Conclusion

In this paper, we present a new online VBR method that using
uncalibrated cameras to creates new views of the scene. Most of pre-
vious methods usually assume that cameras are calibrated. By using
projective grid space (PGS), our method create new view image in
without information about intrinsic parameters. Near and far planes
in PGS for doing plane-sweep are easily defined and visualized from
basis camera 2. These planes must be specified in 3D world coordi-
nates if the plane-sweep algorithm in the Euclidean space (cali-
brated cameras) is used. We simultaneously reconstruct and
render novel view using plane-sweep algorithm in PGS. Our exper-
iment shows convincing results and achieves real-time perfor-
mances by implementing our plane-sweep algorithm on GPU.

References

[1] H. Saito, T. Kanade, Shape reconstruction in projective grid space from large
number of images, in: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR'99), vol. 2, 1999, pp. 49-54.

[2] T. Kanade, P.W. Rander, P.J. Narayanan, Virtualized reality: concepts and early
results, in: Proceedings of IEEE Workshop on Representation of Visual Scenes,
1995, pp. 69-76.

[3] M. Okutomi, T. Kanade, A multiple-baseline stereo, IEEE Transactions on
Pattern Analysis and Machine Intelligence 15 (4) (1993) 353-363.

[4] S. Moezzi, A. Katkere, D.Y. Kuramura, R. Jain, Reality modeling and
visualization from multiple video sequences, IEEE Computer Graphics and
Applications 16 (6) (1996) 58-63.

[5] C. Zitnick, S. Kang, M. Uyttendaele, S. Winder, R. Szeliski, High-quality video
view interpolation using a layered representation, ACM Transactions on
Graphics 23 (3) (2004) 600-608.

[6] J. Carranza, C. Theobalt, M. Magnor, H.-P. Seidel, Free-viewpoint video
of human actors, ACM Transactions on Graphics 22 (3) (2003) 569-
577.

[7] J. Starck, A. Hilton, Model-based multiple view reconstruction of people, in:
Proceedings of IEEE International Conference on Computer Vision (ICCV’03),
IEEE Computer Society, Washington, DC, 2003, pp. 915-922.

[8] S. Jarusirisawad, H. Saito, 3DTV view generation using uncalibrated pure
rotating and zooming cameras, Image Communication 24 (1-2) (2009) 17-30.

[9] S. Moezzi, L.C. Tai, P. Gerard, Virtual view generation for 3D digital video, IEEE
Transactions on MultiMedia 4 (1) (1997) 18-26.

[10] M. Li, M. Magnor, H.-P. Seidel, Hardware-accelerated visual hull reconstruction
and rendering, in: Proceedings of Graphics Interface 2003, 2003, pp. 65-71.

[11] M. Li, M. Magnor, H.-P. Seidel, Online accelerated rendering of visual hulls in
real scenes, Journal of WSCG 11 (2) (2003) 290-297.

S. Jarusirisawad et al./]. Vis. Commun. Image R. 21 (2010) 577-585 585

[12] C. Theobalt, M. Li, M. Magnor, H.-P. Seidel, A flexible and versatile studio for
multi-view video recording, in: Proceedings of Vision, Video and Graphics
2003, Bath, UK, 2003, pp. 9-16.

[13] W. Matusik, C. Buehler, R. Raskar, S.J. Gortler, L. McMillan., Image-based visual
hulls, in: Proceedings of ACM SIGGRPAH’00, 2000, pp. 369-374.

[14] J. Yang, M. Everett, C. Buehler, L. McMillan, A real-time distributed light field
camera, in: Proceedings of the 13th Eurographics Workshop on Rendering,
2002, pp. 77-86.

[15] H. Schirmacher, M. Li, H. Peter Seidel, On-the-fly processing of generalized
lumigraphs, in: Proceedings of Eurographics 2001, 2001, pp. 165-173.

[16] RT. Collins, A space-sweep approach to true multi-image matching, in:
Proceedings of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 1996, pp. 358-363.

[17] R. Yang, G. Welch, G. Bishop, Real-time consensus-based scene reconstruction
using commodity graphics hardware, in: Proceedings of the 10th Pacific
Conference on Computer Graphics and Applications (PG 2002), IEEE Computer
Society, Washington, DC, 2002, p. 225.

[18] I Geys, S. Roeck, L. Gool, The augmented auditorium: Fast interpolated and
augmented view generation, in: Proceedings of the Second IEE European
Conference on Visual Media Production, 2005, pp. 94-103.

[19] V. Nozick, H. Saito, Real-time free viewpoint from multiple moving cameras,
in: Advanced Concepts for Intelligent Vision Systems (ACIVS), 2007, pp. 72-83.

[20] H. Kato, M. Billinghurst, Marker tracking and hmd calibration for a video-based
augmented reality conferencing system, in: Proceedings of the Second IEEE
and ACM International Workshop on Augmented Reality, 1999, pp. 85-94.

[21] S. Jarusirisawad, H. Saito, V. Nozick, Real-time free viewpoint video from
uncalibrated cameras using plane-sweep algorithm, in: Proceedings of the
IEEE International Workshop on 3-D Digital Imaging and Modeling (3DIM),
2009, pp. 1740-1747.

[22] RI. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, second
ed., Cambridge University Press, Cambridge, 2004, ISBN 0521540518.

[23] V. Nozick, H. Saito, On-line free-viewpoint video: from single to multiple view
rendering, International Journal of Automation and Computing (IJAC) 5 (3)
(2008) 257-267.

[24] B. Matei, P. Meer, A general method for errors-in-variables problems in
computer vision, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, vol. 2, 2000, pp. 18-25.

[25] J. Starck,]. Kilner, A. Hilton, Objective quality assessment in free-viewpoint
video production, in: Proceedings of the 3DTV Conference: The True Vision -
Capture, Transmission and Display of 3D Video, 2008, pp. 225-228.

