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Real-Time Counting People in Crowded Areas by Using Local
Empirical Templates and Density Ratios
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SUMMARY In this paper, a fast and automated method of counting
pedestrians in crowded areas is proposed along with three contributions.
We firstly propose Local Empirical Templates (LET), which are able to
outline the foregrounds, typically made by single pedestrians in a scene.
LET are extracted by clustering foregrounds of single pedestrians with sim-
ilar features in silhouettes. This process is done automatically for unknown
scenes. Secondly, comparing the size of group foreground made by a group
of pedestrians to that of appropriate LET captured in the same image patch
with the group foreground produces the density ratio. Because of the lo-
cal scale normalization between sizes, the density ratio appears to have a
bound closely related to the number of pedestrians who induce the group
foreground. Finally, to extract the bounds of density ratios for groups of
different number of pedestrians, we propose a 3D human models based
simulation in which camera viewpoints and pedestrians’ proximity are eas-
ily manipulated. We collect hundreds of typical occluded-people patterns
with distinct degrees of human proximity and under a variety of camera
viewpoints. Distributions of density ratios with respect to the number of
pedestrians are built based on the computed density ratios of these patterns
for extracting density ratio bounds. The simulation is performed in the
offline learning phase to extract the bounds from the distributions, which
are used to count pedestrians in online settings. We reveal that the bounds
seem to be invariant to camera viewpoints and humans’ proximity. The
performance of our proposed method is evaluated with our collected videos
and PETS 2009’s datasets. For our collected videos with the resolution of
320x240, our method runs in real-time with good accuracy and frame rate
of around 30 fps, and consumes a small amount of computing resources.
For PETS 2009’s datasets, our proposed method achieves competitive re-
sults with other methods tested on the same datasets [1], [2].
key words: local empirical templates, local density ratios, density ratio
bounds, and people counting

1. Introduction

An open vision problem [3] is to real-time count people
from a monocular camera in crowded areas. A great deal of
practical applications i.e. public transport security [4]–[6],
building security [3], [7], pedestrian traffic management [4],
[5], [7], and consumer estimation [7], etc. need the knowl-
edge of the number of people walking through a scene. The
prevalence of cameras on the doorstep and the increasing
permeation of vision-based techniques to many corners of
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life make vision-based people counting approaches become
potential solutions.

One of the most challenges of counting pedestrians
under the view of surveillance cameras is due to humans’
swarm behavior. Pedestrians usually gather to form groups
walking together, in turn, exhibiting occluded-pedestrian
patterns that pose a difficult recognition problem not only
for computer vision techniques but also sometimes even
for human eyes. It seems to be a bottleneck in applying
the advances of computer vision to people counting, espe-
cially in crowded areas. To overcome the bottleneck, some
existing methods are restricted to work in specific camera
viewpoints, i.e. top-view viewpoint [8]–[12]. In surveil-
lance, oblique settings of cameras are preferable due to a
wider field of view. Others need a significant amount of
work for settings and initialization when camera viewpoints
change [4], [5], [13]–[15]. In practice, camera-viewpoint
changing during the operation likely occurs due to both hu-
man and natural factors, such as carelessness in cleaning and
maintaining cameras, and earthquakes, etc. In this context,
these methods are prone to poor performance unless repeat-
ing such initial setups. In addition, dynamic lighting condi-
tions also cause detrimental effects.

Recently, the common methodology to infer the infor-
mation of a crowd is based on the local features of indi-
viduals appearing in the same local image patches with the
crowd. This methodology is successfully applied to track-
ing people in extremely crowded environments [16], [17].
In the similar methodology, this paper presents a method
that is able to simply self-discover unknown scenes captured
from an uncalibrated surveillance camera and subsequently
to count pedestrians. The method can cope with various
viewpoints, ranging from oblique to top views using nei-
ther complicated nor manual initial setups. It is essential in
practice when we want to apply the method to count pedes-
trians in many places without repeating such initial settings.
During the operation, the method continues to explore the
working scene to adapt to unexpected changes of camera
viewpoints. Pedestrians are either separated individuals or
groups of several occluded people under the view of cam-
era, moving in unconstrained manner. The method can be
performed in real-time, consuming a small amount of com-
puting resources. It is applicable to a counting system with
several cameras and only one processing device.

To realize the method, we propose to use local empir-
ical templates and density ratios. The former is the fore-
grounds induced by single pedestrians in the local image
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patches. They are clustered upon their features of similar sil-
houettes along trajectories because pedestrians are different
in sizes. Each image patch has the most appropriate LET, re-
sulting tens of empirical templates in the viewing window.
Roughly speaking, the empirical templates can outline the
foregrounds typically made by single pedestrians. By using
LET, perspective effect of cameras can be handled. Given
a scene, the empirical templates most appropriate for the
scene can be determined when single pedestrians are spot-
ted in the scene. By its nature, the size of single pedes-
trians is always smaller than that of groups of pedestrians
captured in the same image patches with the single pedes-
trians. Therefore, the clustering process to extract LET for
unknown scenes can be performed automatically. During
the operation†, LET are updated when single pedestrians
are found, leading the capability of adaptation to unexpected
camera-viewpoint changes.

The latter is the ratio between the size of a foreground
made by a group of pedestrians and the size of LET con-
sidered the most appropriate for the image patch where the
group foreground is captured. Because of the local scale
normalization between sizes, each density ratios appears to
have a bound closely related to the number of pedestrians
that induce the group foregrounds. We extract the bounds of
density ratios for groups of different numbers of pedestrians
in the offline learning phase, and reveal that the bounds seem
to be invariant to camera viewpoints and humans’ proxim-
ity. Both LET and the bounds are used to count the pedes-
trians in the online counting phase, captured from unknown
scenes.

To extract the bounds of density ratios, both empiri-
cal approach and the proposed approach in this paper, 3D
human models based simulation, can be used. In the for-
mer approach reported in our previous work [18], occluded-
pedestrians patterns are extracted from a large collection of
surveillance videos under different viewpoints and weather
conditions. These patterns are manually classified into cat-
egories according to the number of people they contain, for
computing the density ratios. It is shown from the empiri-
cal data that density ratios of the patterns in each classified
category are both lower and upper bounded. Both lower and
upper bounds of each category are so-called density ratio
bounds. It seems that the bounds are invariant to camera
viewpoints, lighting conditions, and the pedestrians’ prox-
imity [18]. The limited observed data, however undoubt-
edly, cannot cover all situations in reality to prove these
above observations.

The latter approach, proposed in this paper, is a 3D hu-
man models based simulation in which camera viewpoints
and interpersonal distances of pedestrians in groups are eas-
ily adjusted. Google Sketchup, a powerful tool to model our
world in 3D, is the most suitable simulation environment
for our approach. Camera positions in Google Sketchup
are changed on the surface of hemispheres whose radii are
the distances between the camera and pedestrians, to cap-
ture occluded-pedestrians patterns as shown in Fig. 1. In
addition, the proximity of pedestrians is able to vary from

Fig. 1 Our 3D human models based simulation setup in Google
Sketchup.

dense to sparse by manipulating the interpersonal distances
between 3D human models. By doing so, the data obtained
from the simulation is more sufficient than the data obtained
from the former approach, since it is possible to cover most
typical situations in reality.

Two assumptions are made for the proposed method
of people counting to work: (1) pedestrians must be in up-
right pose; (2) no vehicles or other moving objects appear in
the scene, that is, only people are moving objects taken into
consideration. A few cases are also excluded in our study:
(1) pedestrians far away from the camera so their sizes ap-
pear very small. Quantitatively, the height of the pedestrian
is less than 5% height of the view. (2) Groups with serious
occlusion, which even challenge human eyes to count.

Since recently, there is a growing interest focusing on
the topic of people counting, an increasingly urgent prob-
lem is how to evaluate fairly these algorithms’ performance.
It is recommended to test algorithms on the same Bench-
mark, in turn, leading fair comparisons. Thus, one dataset
of PETS 2009 Challenge was designed for person count and
density estimation to meet the growth in the development
of the field [3]. Therefore, our proposed method are evalu-
ated on both PETS 2009 benchmark datasets and our video
samples collected from real scenes with various parameters,
such as viewpoints, lighting conditions, and occlusion.

The rest of this paper is organized as follows. Sec-
tion 2 provides a review of related works. Our proposed
method consisting of offline learning and online counting
phases is presented in Sect. 3. In the offline learning phase,
we will focus on the proposed 3D human models based sim-
ulation to extract occluded-people patterns and density ratio
bounds. Experimental results and performance evaluation
are reported in Sect. 4. Conclusions and future works are
made in Sect. 5.

†The online counting phase.
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2. Related Works

In this section, we delineate the context of our proposed
method in the backdrop of related works, which can be bro-
ken into two categories. One trying to segment a group of
pedestrians into individuals is quite dominant so far. The
second treating a group of pedestrians en bloc or as a single
entity [4] is considered by few studies.

To count people in entrance/exit gates and in elevator
zones, the top-view viewpoint was usually used [8]–[10],
[12]. There are almost no occluded people under this view-
point thus it is easy to segment and count individuals. How-
ever, the region of interest is limited by the constraint of
ceilings. Through the training, Park et al., [11] obtained the
mean and variance values of persons size in each sector of
72-sector-devided images, which are sensitive to the height
of camera positions and are used to count people later. His
work only reported results of top-view viewpoint cases. In
practice, oblique settings of camera are more preferable in
spite of the difficulty of occluded people.

Haritaoglu et al., [19] developed W4 system for real-
time detecting and tracking multiple people. It counts
groups of people by roughly finding heads through corre-
sponding peaks of horizontal projected histogram of group
foregrounds. Human shape models were used to interpret
the foreground in a Bayesian framework that was imple-
mented by Markov Chain Monte Carlo method [20]. It could
segment a group of people into individuals at the expense of
high computational cost. In their latter work [21], human
motion was globally tracked by using 3D ellipsoid human
shape models. Robust results are shown on some difficult se-
quences, successfully tackling situations of a small number
of people moving together, having occlusion, cast shadow
and reflection. Cast shadow is removed by the geometrical
analysis with a seemingly reasonable assumption of known
sun light direction.

People positions were found by searching rectangular-
patch pedestrian models across foreground regions in a
heuristic way to maximize overlap area [22]. Distance be-
tween two legs is represented by periodic and quasi-periodic
signals which aid to count people in a group [6], [23]. They
show that these signals extracted from a single person and
from occluded people are of different patterns. Very small
groups of people who perhaps must walk across camera
could be detected. It is realized that so far these methods
seem to rely on obtaining good quality foreground.

Human appearance models were used to detect people
in occlusion. Appearance models for unoccluded people en-
tering the scene are built and subsequently are tracked in
the conditions of occlusion [24]–[26]. Xi Zhao et al., [27]
presented a people counting approach based on face detec-
tion and tracking. A standard face detector located faces
tracked them. Free camera viewpoint is obviously achieved
but people need to turn their faces to camera. Li et al., [28]
trained offline Adaboost HOG (Histogram of Oriented Gra-
dients) features of heads and shoulders to detect people in

each frame. They argued that people in occlusion even in
crowded environments often presented features of heads and
shoulders. Okuma et al., [29] introduced a combination of
Adaboost for object detection and particle filter for track-
ing. However, both of them [28], [29] have two weaknesses
in common: stringent requirement of extensive tracking data
and inaccurate estimated results in cluttered environments.

Multiple-camera and stereo solutions are another po-
tential class of approaches to resolve the problem of oc-
cluded people. Kettnaker and Zabih [14] combined visual
appearance matching with mutual content constraints be-
tween cameras to identify a same person from different cam-
eras. M2 Tracker system [15] could segment and track peo-
ple in cluttered environments by using region-based stereo
from up to 16 cameras. However, multiple-camera solu-
tion is limited to applications of small spatial areas. Kelly
et al., [5] discussed a stereo solution for people counting
in both indoor and outdoor crowded scenes under various
viewpoints. They developed 3D clustering process by using
bio-metrically inspired constraints for people detection and
track matching process in a weighted maximum cardinal-
ity matching scheme. However, in general, multiple-camera
and stereo solutions require prior deliberate camera calibra-
tion and significant amount of work for registration. If there
is any change in camera installation in practice, calibration
and registration must be repeated again.

The other promising class of techniques to alleviate oc-
clusion is clustering. Rabaud and Belongie [30] clustered
Kanade-Lucas-Tomasi (KLT) features and tracked them
across frames in crowded scenes. The KLT tracker, by its
very nature, seems to tackle occlusion well in crowded ar-
eas. Brostow and Cipolla [31] applied a Bayesian frame-
work for clustering of feature point trajectories to detect in-
dividuals in a crowd.

Segmenting a group of occluded pedestrians into in-
dividuals provides both the number of pedestrians and the
additional information of their locations in the group that is
not the gist of the problem of people counting. For dense
groups in crowded areas, foreground may not be easily seg-
mented. Therefore, some authors treated a group en bloc to
estimate its count, leading good performance. Davies et al.,
[32] used linear fitting to find the relationship between the
number of edge pixels and the number of people in a region
of interest. Texture measured as different qualitative labels
since they argued that image of sparse and dense crowds was
often made up of low and high frequency patterns, respec-
tively [33]. The link between these qualitative labels and the
counts depends on specific applications. The classification
was done by self-organizing map that involved an intensive
training. Kilambi et al., [4] provided a solution in the light
of using geometric projections, dealing with the entire area
occupied by a group as a whole rather than trying to detect
individuals separately. Estimated occupied areas were com-
bined with some social statistics of interpersonal distance to
determine the count. The results reported usually inaccu-
rate and seemed to be sensitive to the distance from people
to cameras. The reason is that these social statistics are not
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true, in general, for real applications. In the same spirit, Arai
et al., [13] analyzed quantitatively the geometrical relation-
ships between image pixels and their intersection volumes in
the 3D world to estimate the number of people. Both these
methods must repeat the camera calibration and registration
if they want to count people in unknown scenes. Chan et
al., [1], [34] adopted Gaussian process regression for seg-
ment, internal edge, and texture features which are manually
normalized to account for perspective to estimate the num-
ber of people. Albiol el al., [2] analyzed moving corners to
count people. They assumed that each person, on average,
exposes a particular number of moving corners. However,
it does not hold in general since the average moving corner
per person may vary in accordance with camera viewpoints.
Lee and Kim [35] count pedestrians entering and leaving a
virtual gate. Foreground detected in the virtual gate is accu-
mulated in a period of time to build a foreground map and is
distinguished by two moving directions of pedestrians based
on motion vectors. They assume that pedestrians only move
in two directions to enter and leave the virtual gate. They
argue that one person passing the virtual gate will exhibit
a particular number of foreground pixels in the foreground
map, depending on humans’ speed.

In this paper, we take advantage of treating a group of
occluded people en bloc. Our system consists of low-cost
but effective modules in order to ensure real-time imple-
mentation, good accuracy, and adaptation to various camera
viewpoints without a complicated or manual initial setup.

3. Proposed Method

The proposed method is comprised of an offline learning
phase and an online counting phase. In the offline learning
phase, the proposed 3D human models based simulation is
performed to extract patterns of both single pedestrians and
groups of pedestrians under a variety of camera viewpoints
and with different degrees of pedestrians proximity. Fore-
grounds of these patterns are segmented to produce single
foregrounds and group foregrounds, respectively. Cluster-
ing single foregrounds, induced by single pedestrians, leads
to the generation of Local Empirical Templates. Density ra-
tios of group foregrounds, induced by groups of pedestrians,
are defined as the ratio of the size of the foregrounds to that
of appropriate LET, considered in the same image patches
with the group foregrounds. We take the density ratio cal-
culation for all group foregrounds extracted from the sim-
ulation in order to build the distributions of density ratios
with respect to the number of pedestrians. Upper and lower
bounds of the distributions are extracted as the density ra-
tio bounds. Since these occluded-people patterns obtained
from the simulation under different viewpoints and distinct
degrees of human proximity, the bounds seem to be inde-
pendent of these factors. Both Local Empirical Templates
and Density Ratio Bounds are used to count pedestrians in a
foreground captured online from unknown scenes.

3.1 Local Empirical Templates, Local Density Ratios, and
Density Ratio Bounds

The local empirical templates of single foregrounds are rep-
resented by their width, height and trajectories or their po-
sitions in the image. Depending on different settings, es-
pecially the viewpoints of camera, the number of LET in a
fixed-view window can be as few as a couple or as many as
tens. Experiments on the single LET and group foregrounds
reveal the following observations:

• The LET of single foregrounds can be used to discrim-
inate single foregrounds from group foregrounds. The
relative sizes of the extracted foregrounds from each
other reveal the corresponding crowd densities in many
cases, and therefore the foregrounds with sizes smaller
than most of the others are likely to be caused by single
pedestrians. The decision can be made using a distance
measure between the foreground and the LET.
• If the viewing window is divided into M × N cells (im-

age patches) by a grid, the local density ratio, D(m, n),
can be defined for each cell (m, n), n = 1, . . . ,N; m =
1, . . . ,M, as follows,

D(m, n) =
S g(m, n)

Ts(m, n)
=

S g(m, n)

Htemp(m, n) ×Wtemp(m, n)
(1)

where S g(m, n) is the size of a group foreground cap-
tured at cell (m, n) and its neighbors because a group
foreground may not appear in one cell, and Ts(m, n)
is the size of the local empirical template, measured
by its width Wtemp(m, n) and height Htemp(m, n) at the
cell (m, n). It is observed that although both S g(m, n)
and Ts(m, n) vary across the viewing window, the vari-
ation in D(m, n) appears limited by a bounded range
when the crowd density in the group foreground is kept
a constant. In other words, the following bounds can
be observed,

DM(Np) > D(m, n,Np) > Dm(Np) (2)

where DM and Dm are the upper and lower bounds of
density ratio D(m, n,Np) of a group foreground con-
taining Np pedestrians at cell (m, n).

Equation (2) shows that the local density ratios are in-
dependent of the cell’s location (m, n), and depend on Np

only. Because Np can be considered an absolute crowd den-
sity of a group foreground which has different sizes over the
viewing window, the local density ratio D(m, n,Np) normal-
izes its size variation to that of the LET.

3.2 Offline Learning and 3D Human Models based Simu-
lation

In the offline learning phase, we setup a simulation environ-
ment in Google Sketchup (see Fig. 1). Various 3D human
models† are manipulated standing on the ground with dif-

†Up to ten.
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ferent proximity, ranging from dense to sparse groups. The
human models wear many kinds of fashion and are in dis-
tinct poses. Camera positions are changed on the surface of
hemispheres to capture groups-of-pedestrians samples oc-
cluded under the views of camera. Radius of the hemisphere
is adjustable to generate samples in which pedestrians are far
away and close to the camera. This simulation makes sure
that most typical camera viewpoints and configurations† of
groups of pedestrians are covered.

To model the camera viewpoints, a spherical coordi-
nate system is used as shown in Fig. 1 since the camera is
moved on the surface of a quarter of a hemisphere.

Pcamera = P(r, α, θ)

r ≈ const (3)

α = [0, 90o],Δα = 10o

θ = [0, 60o],Δθ = 15o

where, r the radial distance, α the azimuth angle, θ the in-
clination angle. The angles are measured in degrees. In
surveillance, the inclination angle usually varies between 0
and 60 degrees since the camera is mounted well above the
human’s head. When the inclination angle is 0 degree, we
have the top view. In the simulation, given a fixed num-
ber of pedestrians NP, the azimuth angle α is kept in con-
stant and the inclination angle θ is adjusted between 0 and
60 degrees by a step of 15 degrees to capture the occluded-
people patterns. Similarly, when the inclination angle θ is
kept in constant, the azimuth angle α is adjusted between 0
and 90 degrees by a step of 10 degrees. The human prox-
imity is also adjusted along with the changes of angle set-
tings. Consequently, 50 occluded-people patterns are cap-
tured for each NP. By changing the azimuth and inclination
angles in this way, it is confident to capture typical situa-
tions of pedestrians in occlusion. In total, we generated 500
occluded-people patterns with NP varying from 1 to 10. Fig-
ure 2 shows the description of adjusting azimuth and incli-
nation angles in the simulation.

The radial distance is kept nearly constant in the simu-
lation since it plays as a scale factor in both numerator and
denominator of Eq. (1). If the radial distance is changed, for
example, from high to small values, the density and the size
of both group foregrounds and LETs increase by approxi-
mately equal scale factors. In Sect. 4.2, we will discuss how
to choose the radial distance to ensure a good accuracy of
the proposed method.

For each camera viewpoint and configuration of groups
of pedestrians, two images are generated. One captures the
group of pedestrians in occlusion under the view of camera
and the other captures only one single pedestrian in the same
image patch that plays as an appropriate local empirical tem-
plate, as shown in Fig. 3. The counts of pedestrian groups,
so-called Ground Truth, Np, are generated along with each
group. We calculate local density ratios for all occluded-
people patterns of these groups by Eq. (1) and split them
into categories according to their ground truth, for construct-
ing distributions of density ratios with respect to the ground

truth. We aim at proving our observation in Eq. (2) via the
distributions.

In this paper, we consider groups containing up to ten
pedestrians, that is, the ground truth, Np, will vary from
one to ten. Density ratios of all occluded-people patterns
computed by Eq. (1) are drawn in a scatter plot in Fig. 4 to
visualize the distributions of density ratios with respect to
the ground truth. Density ratios of occluded-people patterns
having the same ground truth are denoted in Fig. 4 by a same
symbol. It is obvious to see that there exists a boundary
to separate two categories of group foregrounds with two
successive values of ground truth. The decision boundary
should be a horizontal line. Given a fixed number of pedes-
trians NP, we consider the distribution of local density ratios
as a triangle. DM and Dm, the bounds of local density ratios
for various NP are found at the intersections of these trian-
gles, constructed from the data of the scatter plot in Fig. 4,
and are given in the Table 1.

The training dataset used in the offline learning phase
in this paper is completely different and more sufficient than
the one used in [18] since it covers typical situations, in
terms of camera viewpoints and the degree of human prox-
imity. Interestingly, the obtained density ratio bounds given
in Table 1 are quite similar to the ones in [18]. That is, it
demonstrates the generality of density ratio bounds to cope
with various viewpoints and a variety of degrees of human
proximity.

The offline learning phase is summarized by the
flowchart in Fig. 5.

3.3 Online Counting

The online counting consists of the following steps, as
shown in Fig. 6.

1. Foregrounds are firstly extracted from the input video
using the GMM [36] and enhanced by applying mor-
phological operator i.e. open and close to remove pep-
per noise and eliminating moving shadow [37].

2. In the online counting phase, the input scene is un-
known. It is necessary to explore the LETs, which
are appropriate to the working scene. To extract LETs
for the working scene, we keep the sizes of all fore-
grounds observed in the working scene in the cell
buffers. The foregrounds are either single foregrounds
or group foregrounds. It is the fact that the sizes of
single foregrounds are smaller than the sizes of group
foregrounds. In each cell, we choose the foregrounds
whose sizes are similar and smaller than the sizes of
the others for clustering to extract LET for the cell.
In our implementation, we design a user-friendly in-
terface to facilitate the LET exploration. Our system
marks a bounding box for each detected foreground.
If the users observe a few single pedestrians already
passing through the scene, the users can stop the LET

†Arrangement of pedestrians positions on the ground.



1796
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

α = 0o

α = 10o

α = 20o

α = 30o

α = 40o

α = 50o

α = 60o

α = 70o

α = 80o

α = 90o

(a) θ = 0o (b) θ = 15o (c) θ = 30o (d) θ = 45o (e) θ = 60o

Fig. 2 Description of adjusting azimuth and inclination angles in the 3D human model-based
simulation.
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(a) Groups of people (b) Appropriate LETs

Fig. 3 Samples of generated images.

Fig. 4 Distributions of density ratios with respect to the ground truth.

Table 1 Bounds of local density ratio and corresponding ground truth
(the number of people in the groups).

Local Density Bounds Np

0.3 ∼ 0.6 1
0.6 ∼ 1.1 2
1.1 ∼ 1.4 3
1.4 ∼ 1.9 4
1.9 ∼ 2.45 5
2.45 ∼ 2.87 6
2.87 ∼ 3.3 7
3.3 ∼ 3.78 8
3.78 ∼ 4.25 9
4.25 ∼ 4.9 10

exploration and proceed to the counting. This step en-
sures that our counting system has already observed
single pedestrians passing through the scene. The sizes
of these single pedestrians are clustered to extract LETs
for this scene. Subsequently, our counting system per-
forms the interpolation and extrapolation to determine
the LETs for the cells observing no single pedestrians
based on the LETs of adjacent cells. During the count-
ing phase, LETs can be corrected via the scheme of

Fig. 5 Flowchart of the offline learning phase.

Fig. 6 Flowchart of the online counting phase.

scene-based template update that is described later in
this section. This process is straightforward for the user
without knowledge of computer vision to perform. Af-
ter this step, our system is ready to count pedestrians
passing through this scene.

3. A nearest neighbor classifier is trained in the offline
learning phase to discriminate single foregrounds from
group foregrounds in the online counting phase. The
training samples of single foregrounds and group fore-
grounds are denoted as the positive and negative ones,
respectively. In the offline learning phase, occluded-
people patterns and their appropriate LETs are avail-
able. The sizes of group foregrounds are normalized to
the sizes of LETs to form the negative training samples.
LETs by its nature are single foregrounds. Therefore,
the sizes of single foregrounds are normalized to the
sizes of LETs to create the positive training samples.
In the online counting phase, the size of a given fore-
ground is normalized to the size of its appropriate LET
to create the feature vector. The nearest neighbor clas-
sifier makes discrimination decisions based on this fea-
ture vector.



1798
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.7 JULY 2012

4. The single foregrounds, their trajectories, and the LET
that have validated the single foregrounds are kept in
a memory buffer for the cells where the single fore-
grounds are captured. That is, these single foregrounds
are used to update corresponding LET, so-called scene-
based template update, according to the following for-
mulae.

Hnew
temp(m, n) = (1 − α)Hold

temp(m, n) + αHsing(m, n) (4)

Wnew
temp(m, n) = (1 − α)Wold

temp(m, n) + αWsing(m, n) (5)

where, Hsing(m, n) & Wsing(m, n) are height and
width of a detected single foreground, respectively,
Htemp(m, n) & Wtemp(m, n) are sizes of LET at the cell
(m, n), and α is the learning rate. After the process
of LET exploration, the initial LETs are the results of
clustering the sizes of a few single pedestrians. The
learning rate is set to a high value, for example 0.4, to
continue learning the sizes of detected single pedestri-
ans. For each cell, we make a statistics of how many
times the LET of this cell is updated. If the number of
updates is greater than a particular threshold, i.e. 20 or
30 times, the learning rate is set to a small value, for
instance 0.2. The strategy of selecting the learning rate
in Eq. (4) and Eq. (5) is unchanged for different scenes.
Because single foregrounds may not appear all over
the viewing window, interpolations and extrapolations
on sections of their trajectories are performed to es-
timate and extend the most part of regions that fore-
grounds appear. It is not a rare condition that single
foregrounds only appear in certain segments of a walk-
way because of occlusion, merging, and low contrast to
the backgrounds, etc. Therefore, some cells are short
of LET, and some LET’s trajectories can be broken or
segmented. In the online counting phase, trajectories
of both single and group foregrounds will be kept in
the buffer and analyzed to map out walkway regions.
When single foregrounds appear in segments of these
regions, interpolation and/or extrapolation based on the
observed single foregrounds will be performed to fill
in the cells with “virtual” single foregrounds passing
through. This step helps to distinguish the regions with
foregrounds from the rest without foregrounds, and es-
tablish the scene-based spatial distribution of LET with
appropriate sizes.

5. With the established scene-based spatial distribution of
the LET, the count of pedestrians in a foreground cap-
tured in a local cell (m, n) on the viewing window can
be estimated by the local density ratio in Eq. (1) with
Table 1. Because local density ratio is computed per
frame at each cell, each cell will end up with one to
a few local density ratios when a foreground moves
through. The majority of these density ratios are av-
eraged and considered as the density ratio of the cell.
Together with the density ratios evaluated at all cells
where the foreground passes, the density ratio of the
foreground can be properly determined by a majority

voting. To ensure the accuracy of the people count on
the foreground, the current count is checked for consis-
tency with the counts obtained along the trajectories of
the foregrounds appeared in the previous frames. Pos-
sible split and merge of foregrounds are also consid-
ered in this consistency check.

It is noted that in the first step of the online counting
phase, the moving shadows caused by the sunshine is nearly
eliminated by the algorithm in [37]. Sometimes, the den-
sity estimation of pedestrians is sensitive to small moving
shadows still existing after applying the algorithm in [37].
However, the feature used in this paper is the density ra-
tio that is less sensitive to such small moving shadows. If
the small moving shadows make the density of group fore-
grounds slightly surge, they also make the density of LETs
slighly rise, which are regularly updated by the scheme of
scene-based template update. The effects of moving shad-
ows are somehow compressed by taking the local density
ratio by Eq. (1).

4. Experimental Results and Performance Evaluation

To illustrate the online counting performance of our pro-
posed method with density ratio bounds obtained from the
offline learning phase, we have tested it on PETS 2009
Benchmark as well as our own video samples. The former
is the most difficult in which contain large groups of oc-
cluded people under different illumination conditions. Com-
parisons with results of other methods tested on the same
benchmark are also provided. The latter cover broad spectra
of different parameters i.e. illumination variations, camera
viewpoints, and many kinds of occluded-people patterns.

4.1 Evaluation on PETS 2009 Benchmark

PETS 2009 benchmark provides a training dataset S0, con-
taining subsets for background model learning [3]. Frames
in the dataset S0 contain pedestrians walking through the
scene. Therefore, we exploit sizes of these pedestrians in
dataset S0 for initializing LETs which are used in the online
counting phase.

Figure 7 shows some typical visual results of testing on
both subsets in view 001 of dataset S1, L1. The number in
the top-left corner of the image is the total estimated count
throughout entire image. Manually counted ground truth of
each frame is compared with the results of our proposed
method, our previos work [18], holistic properties-based
method [1] and moving corner-based method [2], tested on
the same dataset. These results are adapted from their pa-
pers [1], [2]. Figure 8 and Table 2 depict the comparison
by graphs sketched in the same coordinate and by Mean
Squared Errors, respectively.

Since PETS 2009 datasets provide short sequences for
testing, we have to use the first frame of these sequences
to initialize the background models of GMM. The first
frames of both subsets contain a few people, generating
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Fig. 7 Results of our proposed method tested on Dataset S1, L1
(view 001); the first two rows are of subset Time 13-59, and the last two
rows are of subset Time 13-57.

ghosts in foreground images. Since the ghost effect in subset
Time 13-57 is more significant than that in subset Time 13-
59, results tested on the subset Time 13-59 are better than
those tested on the subset Time 13-57. In comparison with
other methods tested on the same benchmark [1], [2], the re-
sults of our proposed method are competitive.

In addition, to demonstrate the effectiveness of our
method, Fig. 9 illustrates the instantaneous estimated counts
of a group containing 6 pedestrians during its lifetime ap-
pearing in the scene. Table 3 shows the average estimated
counts for groups of different numbers of pedestrians. Given
a fixed number of pedestrians NP, we extract the total num-
ber of occurrences of groups containing NP pedestrians from
the results of our method, denoted as O(NP). We also extract
the ground truth of these groups GTi. The average estimated
count of the groups containing NP pedestrians, EC(NP) is
the following.

EC(NP) =

∑O(NP)
i=1 GTi

O(NP)
(6)

The average estimated counts in Table 3 are shown for
the method in this paper and the one in [18]. There are only

Fig. 8 Performance comparison between our proposed method, our pre-
vious work [18], other methods using holistic properties and moving cor-
ners, tested on the same datasets, and ground truth. The left graphs are
for subset Time 13-57, the right graphs are for subset Time 13-59. Results
of methods using holistic properties and moving corners are adapted from
their papers [1], [2]

Table 2 Mean Squared Errors of our method and other methods [1], [2],
[18] tested on PETS 2009’s dataset.

Subset Time 13-57 Subset Time 13-59
Our method 7.0073 1.7773

[18] 7.9091 2.1703
Holistic properties [1] 12.7364 6.3799

Moving corners [2] 6.6182 5.6507

some small difference between the results of our method in
this paper and those of our previous work in [18] for groups
of more than five pedestrians.

4.2 Evaluation on In-House Collection

In this section, we further assess the performance of the pro-
posed method by using six input video samples, recorded
under various camera viewpoints and in different weather
conditions. Our system runs in real-time with average pro-
cessing frame rate being around 30 fps and consumes a
small amount of computing resources. Figure 10 shows
some sample frames and the counting results.

The first row of Fig. 10 shows a scene recorded at
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Table 3 Average estimated counts of our methods in this paper and in our previous work [18] for
groups of various pedestrians.

Our method in this paper Our method in [18]
No. of Time 13-57 Time 13-59 Time 13-57 Time 13-59
pedestrians

No. groups Average counts No. groups Average counts No. groups Average counts No. groups Average counts
1 610 1.02 379 1.01 610 1.02 379 1.01
2 383 2.17 301 2.13 383 2.17 301 2.13
3 166 3.26 42 2.93 166 3.26 42 2.93
4 135 4.07 286 3.70 135 4.07 286 3.70
5 98 5.25 138 4.88 98 5.25 138 4.88
6 49 6.40 103 5.68 38 6.36 104 5.68
7 46 6.96 48 6.29 57 6.96 47 6.30
8 22 7.86 0 0 18 7.72 0 0
9 18 8.72 1 9 19 8.63 1 9
10 34 9.85 0 0 11 9.55 0 0
11 25 11.2 0 0 51 10.59 0 0

Fig. 9 Instantaneous estimated counts of a group containing
6 pedestrians during its lifetime.

noon. This scene is challenging since the left hand side
of the scene is under strong sunshine and the right one
is much darker. Its background contains a lot of texture.
When a pedestrian moves from bright to dark regions and
vice versa, the foreground patterns change considerably that
cause some difficulty. Without removing the shadow by the
algorithm in [37], the LET exploration will find large LETs
in the left part of the scene and smaller LETs in the right part
of the scene. By eliminating the moving shadow using [37],
LETs in the left part of the scene, extracted from LET ex-
ploration, become smaller. Given a foreground and its ap-
propriate LET, we take the density ratio by Eq. (1), turning
out the correct numbers of pedestrians. The counting results
in the same scene with and without moving shadow are pre-
sented in the first row of Fig. 10.

The next three rows of Fig. 10 show different crowded
scenes in which many pedestrians move freely, resulting in
many distinct patterns of occluded people. They demon-
strate the ability of our proposed method in estimating the
count of large groups of pedestrians in occlusion. The
last three rows of Fig. 10 demonstrate the test of our pro-
posed method against far-away and top-view viewpoints.
Although good results often observed, some overestimation
and underestimation still occur for groups of nearly full or
full occlusion, and groups with moving bicycles.

Our system works not well when camera is mounted

too high above the ground floor. In this case, the distance
between pedestrians and camera is too far so that their fore-
grounds account for small number of pixels. Local density
ratio computed in Eq. (1) is sensitive to small value of the
denominator or small size of LET. Therefore, small changes
in the numerator of Eq. (1) make local density ratios vary
largely. In practice, broken foregrounds caused by low con-
trast between background and pedestrian appearance often
make the variations of numerator of Eq. (1). However, if the
size of LET is large enough, such variations are well toler-
ated. It is hard to define a specific range for the distance
between the camera and pedestrians to ensure an enough ac-
curacy of our method since cameras are different from res-
olutions. Empirically, the camera viewpoints are chosen so
that the sizes of single pedestrians should not be smaller than
20 by 55. In our system, pedestrians far away from camera,
their small foregrounds are probably filtered as noise.

In our system, pedestrians are kept tracking from the
beginning of entering a scene to the end of leaving the scene.
If a pedestrian completes this close process, the counter in-
creases by one, resulting in the total number of pedestrians
walking through a scene in a period of time. It is impor-
tant information for many real applications, i.e. consumer
estimation, retailing network planning, and public facility
planning [7]. In addition, our system also provides the in-
stant estimated count in every frame that is vital in various
applications, i.e. hazardous-situation awareness systems, in-
telligent walking-signal systems, and public security mon-
itoring systems [3]–[7]. Quantitative evaluation on the In-
House collection is given in Table 4. The results obtained
by our method in this paper and by our previous work [18]
are slightly different. The reasons are that (1) density ratio
bounds used in two works are different for groups of more
than five pedestrians, and (2) In-House collection contains a
few groups of more than five pedestrians.

5. Conclusions

We summarize the proposed concepts of local empirical
templates and density ratios with some important charac-
teristics, which are good for counting people in crowded ar-
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Fig. 10 Results of our proposed method tested on the In-House collection.
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Table 4 Total number of pedestrians by our proposed method, [16], ground truth and counting errors,
evaluated on the in-house collection. The unit of counter and ground truth is person and the unit of
Length is frame.

Our method [18]
Video sequences Length Ground truth Counter Error Counter Error

Sequence 1 30105 48 45 6.25% 45 6.25%
Sequence 2 26979 213 221 3.76% 221 3.76%
Sequence 3 26698 177 172 2.82% 170 3.95%
Sequence 4 4960 13 12 4.95% 12 4.95%
Sequence 5 18540 101 96 4.95% 97 3.96%
Sequence 6 15180 39 38 2.56% 36 7.96%

eas from an uncalibrated surveillance camera. Density of a
group of pedestrians varies according to the size of LET or a
single pedestrian, captured in the same image patch. The ra-
tio of density of occluded pedestrians to that of appropriate
LET is a good feature to discriminate the number of pedes-
trians. Due to the local scale normalization between sizes,
density ratio appears to have a bound, closely related to the
number of people who induce the group. More importantly,
the bounds are relatively invariant to camera viewpoints and
human proximity.

Our proposed method of people counting is composed
of two phases: offline learning and online counting. These
important characteristics are proved in the offline learning
phase in which the 3D human models based simulation is
conducted to collect hundreds of typical occluded-people
patterns in a variety of viewpoints for extracting the bounds.
Both LET and density ratio bounds are used to count pedes-
trians captured online from unknown scenes. Our proposed
method achieves good accuracy, high adaptation to vari-
ous camera viewpoints, and real-time performance† when
it is tested on our video samples with standard resolution
in surveillance. For evaluation on PETS 2009 datasets, it
also shows the competitive results with other methods tested
on the same datasets. Since it is low-cost, we can inte-
grate multi-channels working simultaneously in the same
PC. That is, we could count people in different places si-
multaneously without using extra processing devices.
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