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In this paper, we present a video-based method of detecting fall incidents of the elderly living alone. We
propose using the measures of humans’ heights and occupied areas to distinguish three typical states of
humans: standing, sitting, and lying. Two relatively orthogonal views are utilized, in turn, simplifying the
estimation of occupied areas as the product of widths of the same person, observed in two cameras. However,
the feature estimation based on sizes of silhouettes varies across the viewing window due to the camera
perspective. To deal with it, we suggest using Local Empirical Templates (LET) that are defined as the sizes
of standing people in local image patches. Two important characteristics of LET are: (1) LET in unknown
scenes can be easily extracted by an automatic manner, and (2) by its nature, LET hold the perspective
information that can be used for feature normalization. The normalization process is not only to cancel
the perspective but also to take the features of standing people as the baselines. We realize that heights
of standing people are greater than that of sitting and lying people. People in standing states also occupy
smaller areas than whom in sitting and lying states. Thus, three humans’ states fall into three separable
regions of the proposed feature space, composing of normalized heights and normalized occupied areas. Fall
incidents can be inferred from time-series analysis of human state transition. We test the performance of
our method on 24 video samples in Multi-view Fall Dataset (1) leading to high detection rates and low false
alarms, which outperform the state-of-the-art methods (2) (3) tested on the same benchmark dataset.

Keywords: Fall detection, orthogonal views, local empirical templates, normalized height, normalized occupied area,
and time-series analysis of human state transition

1. Introduction

Nowadays, senior residents account for an increasing
high percentage of the population, particularly in de-
veloped countries. Aging population is raising various
social problems, in particular, health care services for
the elderly. A recent study (4) shows that majority of
the elderly live on their own and they are considered
as an “at-risk” group. They appear to be associated
with higher risks of accidental falls that are reported
as the most common cause of injury for the elderly (5).
The instant treatment for injuries of fallen people is very
critical, especially for the elderly. The degree of injury
is proportional to the delay time in receiving medical
treatments. Hence, we should detect the fall as soon
as possible since accidental falls seem to be unavoidable
and hard to be predicted. Timely responses help fallen
people not worsen the injuries.

In the health care industry, there is a tremendous de-
mand for supportive products and technologies to im-
prove the safety at home (5). One typical example is Per-
sonal Emergency Response System (PERS) (6) compos-
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ing of a small radio transmitter, a console connecting to
the user’s telephone, and an emergency response center
that monitors these types of calls. In emergency cases,
users press the “help” button to contact with emergency
response centers to receive immediate assistance. One
weakness of PERS, which makes it inapplicable in assist-
ing the elderly living alone is that users have to carry the
“help” button 24 hours a day. But the elderly may easily
forget to carry it all the time due to the dementia or the
deterioration of cognitive ability. Moreover, the impact
of shock after accidental falls may force fallen people to
experience unconscious states of mind as well as physical
pain. Pressing the “help” button to call for emergency
assistance seems to be inappropriate in practice. Thus,
the second generation of PERS (6) that is capable of pro-
viding automatic sensing of emergencies is in demand for
the health care of the elderly. In this paper, we describe
a video-based method of automatic fall-incident detec-
tion that plays as a central part in the second generation
of PERS. Fall incidents are automatically detected for
triggering the console to make an instant notification or
contact with the emergency response center.

To develop an effective method of fall detection, it is
essential to understand the concept of a fall as well as
important characteristics of various kinds of fall. In gen-
eral, a person is detected to be fallen if he/she changes
from upright posture to the almost lengthened one in a

c© 2013 The Institute of Electrical Engineers of Japan. 117



Estimating Heights and Occupied Areas for Fall Detection（Dao Huu Hung et al.）

rapid manner and subsequently remains relatively im-
mobile in the latter posture for a while due to the shock
impact of the fall (7). Based on this definition, the fall
detection method must

( 1 ) identify three typical states of humans: stand-
ing, sitting, and lying.

( 2 ) analyze the state transition to detect whether
the person changes states directly from standing
to lying. Normally, if the elderly want to take a
rest on a bed or a sofa, they will firstly sit down
and subsequently lie on the bed or on the sofa in
a gentle way.

( 3 ) extract the speed of the state transition. In con-
trast to the gentle manner of doing daily activi-
ties of the elderly, a fall often occurs in a very
fast pace. Quantitatively, the fall usually lasts
between 1 and 3 seconds (5).

( 4 ) and finally verify the relative immobility in the
lying state of fallen people. The human body can
lie either on the ground floor or on some objects
since in some cases he/she falls to the furniture,
for example, a sofa or a bed, etc.

There are two typical scenarios of fall occurrences (5).
( 1 ) People fall from sleeping (or bed and sofa) or

sitting (or chair). In these two cases, when they
try to get up or stand up, respectively, a fall hap-
pens probably due to the dizziness or syncope.

( 2 ) People fall from standing or walking perhaps on
account of loss of balance. This fall often occurs
when people perform daily activities, i.e. carrying
objects and doing housework, etc.

In daily life, fall incidents occasionally happen. Fall
incidents must be carefully discriminated from like-fall
events, i.e. sitting down brutally on a sofa, and kneel-
ing on the ground, etc. Challenges of indoor video
surveillance like dynamic lighting conditions, low con-
trast between humans’ appearance and background, and
occlusion by the furniture also pose considerable difficul-
ties. Moreover, the initialization process of the method
should be simple so that users without technical knowl-
edge are able to set up and run the system easily.

Our contributions in this paper are three-folds.
( 1 ) First, we propose using the measures of hu-

mans’ heights and occupied areas to distinguish
three typical states: standing, sitting, and lying.
We realize the following relationship between the
features and these states. Heights of standing
people are greater than that of sitting and lying
people. Moreover, people in standing states oc-
cupy smaller areas than whom in sitting and lying
states.

( 2 ) Two cameras whose fields of view are relatively
orthogonal are utilized, in turn, to simplify the
estimation of occupied areas roughly as the prod-
uct of widths of the same person, observed in two
views. This simplification facilitates the real-time
performance of the proposed method. However,
the heights and occupied areas estimated by the
analysis of silhouettes’ sizes vary across the view-
ing windows due to the camera perspective.

( 3 ) To handle the camera perspective, we suggest
using Local Empirical Templates (LET), which
have demonstrated to be effective in dealing with
this issue (8). By definition, LET are the sizes of
foregrounds typically made by a standing person
in local image patches. Therefore, the automatic
LET extraction for unknown scenes is straightfor-
ward (8) (9). We observe that LET in local image
patches far from the camera are smaller than LET
in patches close to the camera. By its nature, LET
hold the perspective information that can be used
for perspective normalization of estimated heights
and occupied areas. The normalization process
serves two purposes: (1) to cancel the perspective
and (2) to take the features of standing people
as the baselines. It creates the distance measures
between features of detected people and the ap-
propriate LET (in standing states). In considera-
tion of the above feature-state relationship, three
states of humans fall into three separable regions
of the proposed feature space, composing of nor-
malized heights and normalized occupied areas,
which can be classified by using support vector
machines.

In performance evaluation and comparison, a recom-
mended methodology is to test the method on a common
benchmark dataset (9). This facilitates a fair comparison
with other existing methods. In this paper, we choose
Multi-view fall dataset,” recently released in public for
scientific communities by Université de Montréal (1) in
Canada for the evaluation of our method. Our proposed
method outperforms two state-of-the-art methods (2) (3)

tested on the same benchmark dataset.
We continue this paper with the provision of related

works in Section 2. Section 3 describes the details of our
proposed method. A brief introduction to the bench-
mark dataset, experiments and performance comparison
are reported in Section 4. Finally, we make concluding
remarks and future works in Section 5. The early version
of this paper appeared in FCV2012 (10).

2. Related Works

In this section, existing fall detection methods are re-
viewed to delineate the context of our proposed method.
There are three kinds of technologies used to develop fall
detection methods: wearable devices, ambient devices
and video processing. Making a review of wearable and
ambient devices-based methods goes beyond the scope
of this paper. Please refer to two survey papers (5) (7)

for your special interests in these methods. Only video-
based methods are taken into consideration in this Sec-
tion. We classify them into two categories of using 2D
and 3D information.

In the former category, the early work of Anderson
et al. (11) analyzed the sizes of human body silhouettes.
The width-to-height ratios or aspect ratios of humans
in standing and lying states are large and small, respec-
tively. However, this observation may not be true in
consideration of the effect of human body upper limb ac-
tivities. To eliminate this effect, Liu et al. (12) used a sta-
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tistical scheme to remove peaks in vertical histograms of
silhouette images. They proposed K-NN classifier work-
ing with a feature space composing of the aspect ratios
and the difference between height and width of silhou-
ettes. Huang et al. (13) introduced the combination of
speed and aspect ratios of silhouettes to discern fall in-
cidents. Both three methods are prone to false alarms
with a fall in parallel to the optical axis of cameras.
Occlusion caused by other objects, i.e., the furniture,
is also not taken into account. They merely reported
the experiments with cameras placed sideways. In prac-
tice of indoor surveillance, the camera is preferred to be
in oblique settings for wider views and occlusion avoid-
ance. Shoaib et al. (14) presented a context model to
learn the head and floor planes from the foregrounds of
a moving person in the scene. Distance measures be-
tween detected heads and referenced heads, provided by
the context model, are adopted as a discriminative fea-
ture. In general, it is able to distinguish bending and
sitting actions from a fall, except the one in parallel to
the optical axis.

Lee and Mihailidis (15) labeled furniture areas in the
image captured from a top-view camera as inactivity
zones, i.e. chair, sofa, and bed, etc. The speed of silhou-
ettes’ centroids is extracted and analyzed by applying
special thresholds for different inactivity zones. In the
similar experimental scenarios, Charif and McKenna (16)

argued that there are few places in a room in which peo-
ple are relatively inactive most of the time for relaxing
activities, i.e., watching television, reading newspaper,
and drinking tea, etc. They are tracked and checked
whether they are inactive in a known inactivity zone.
Their immobility outside known inactivity zones is more
likely caused by fall occurrences. However, both systems
expose several limitations. Firstly, fall occurrences in
inactivity zones are not taken into consideration. Sec-
ondly, the speed estimation of 2D silhouettes is highly
sensitive to cluttered background and daily activities of
humans. Finally, using top-view cameras seems to be
inappropriate for the problem of fall detection since cru-
cial clues from the vertical motion of human body to
recognize a fall is not available.

Motion History Image is adopted to quantify the mo-
tion of human body (17). Large motion is more likely
caused by fall incidents. Silhouettes are approximated
by eclipse models whose orientation angle and the ratio
of major to minor semi-axes are utilized to discriminate
fall incidents from other events, including the like-fall
ones, i.e., sitting down brutally and kneeling. Similarly,
integrated spatiotemporal energy map is used for the
calculation of motion activity coefficients to detect large
motion events (18). Orientation angle, displacement, and
major-to-minor-semi-axes ratio of human eclipse mod-
els are analyzed in the framework of Bayesian Belief
Networks to recognize fall and slip-only events. Chen
et al. (19) presented a combination of distance map of
two sampling human skeletons and variation analysis of
eclipse human models. Rougier et al. (2) supposed that
human shape should change progressively and slowly
during usual activities, and drastically and rapidly dur-

ing a fall. Hence, shape-matching costs during a fall
and a usual activity are high and low, respectively. The
method is reported to work with the frame rate of 5 fps
due to the expense of high computational cost.

Apparently, methods in the former category have sev-
eral limitations in terms of camera viewpoints, occlu-
sion, and falls in parallel to the optical axis, etc. The
reason is that the combination of 3D spatial features
and temporal structures of actions, which is powerful in
representing and recognizing human activities are not
made use of. In the latter category, Cucchiara et al. (20)

used a caliberated camera to train probabilistic projec-
tion maps for each posture, i.e. standing, crouching,
sitting, and lying. They suggested using a tracking algo-
rithm with a state-transition graph to handle occlusion,
in turn, leading to reliable classification results. In their
latter work (21), partial occlusion is detected and com-
pensated by a wrapping method from multiple cameras.
A Hidden Markov Model (HMM) is trained for obtain-
ing more robust recognition results. Posture recognition
is carried out by using 3D human centroid distance from
the floor plane, extracted from a calibrated camera, and
the orientation of the body spine (23). Thome et al. (24)

applied the metric image rectification to derive the 3D
angle between vertical line and principal axis of eclipse
human models. Decisions made independently by mul-
tiple cameras are fused in a fuzzy context to classify
postures. Layer HMM is hand designed to make event
inference. Anderson et al. (25) introduced a framework
of fall detection in the light of constructing voxel per-
son. Linguistic aspect of the hierarchy of fuzzy logic
used in this research for fall inference makes this frame-
work extremely flexible, allowing for user customization
based on their knowledge of cognition and physical abil-
ity. Recently, Auvinet et al. (3) discussed a method of
reconstructing 3D human shape from a network of cam-
eras. They proposed the idea of Vertical Volume Distri-
bution Ratio since volumes of standing and lying-down
person are vertically distributed significantly differently.
The method is able to handle occlusion since the 3D re-
constructed human shape is contributed from multiple
cameras.

3. Our Proposed Method of Fall Detection

To develop an effective method of fall detection, we
take advantages of the latter category of approaches by
combining 3D spatial information and temporal struc-
ture of actions. The measures of humans’ heights and
occupied areas form a feature vector to classify three
typical humans’ states: standing, sitting, and lying. Fall
incidents are discriminated from other usual activities by
a time-series analysis of human state transition. Fig. 1
shows the flowchart of our proposed method.

In order to ensure the real-time performance, we sug-
gest using two orthogonal views to simplify the compu-
tation of occupied areas. The two cameras are in oblique
viewpoint settings and their fields of view are relatively
orthogonal. The video sequences are processed by Gaus-
sian Mixture Models (GMM) (26) to segment foregrounds
for detecting people. The sizes of people are extracted
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Fig. 1. The flowchart of our proposed method

Fig. 2. Local Empirical Templates (The sizes of
cells in this figure are for demonstration purpose)

from two cameras and fused to compute the feature vec-
tor for discriminating humans’ states. In the followings,
we describe the key modules of our proposed method in
details.

3.1 Local Empirical Templates Local Empir-
ical Templates (LET) are important in perspective nor-
malization process and the people detection algorithm.
In this section, we introduce the definition, important
characteristics of LET and an automated way of ex-
tracting LET for unknown scenes. As indicated in the
flowchart, LET of the working scene must be available
before the whole method works. The process of LET
extraction can be considered as the initial setup of our
proposed method. However, it is straightforward and
can be done in an automated way (8) (9).

We divide the working scene into many cells, as shown
in Fig. 2. LET is defined as the sizes of standing people
in local image patches or local cells. There is one LET
reflecting the typical size of standing people in each cell.
Our observations in Fig. 2 are that the size of the man
in the left image is small since he is far from the camera.
Meanwhile, his size in the right image is bigger since he
appears close to the camera. These definition and ob-
servations lead to two important characteristics of LET.
(1) LET, by its nature, hold the information of the cam-
era perspective. (2) LET extraction for unknown scenes
is straightforward and can be done automatically since
LET are merely the sizes of standing people in local im-
age patches (8) (9).

Suppose that the scene is divided into M ×N cells so

Fig. 3. The flowchart of LET extraction process

that the sizes of people must be nearly constant in each
cell. The number of cells depends upon the resolution
and the viewpoints of cameras. It is common in practice
that LET does not appear fully in one cell but in several
cells as shown in Fig. 2. Thus, we define the LET for the
cell (i, j) as the following:

T (i, j) = {WT (i, j), HT (i, j)}· · · · · · · · · · · · · · · · · (1)
i ∈ [1, M ], j ∈ [1, N ]

where, T (i, j) the LET whose head appears in the
cell (i, j), WT (i, j) and HT (i, j) width and height of the
LET, respectively.

The fall detection method is dedicated to a specific el-
derly person. LET should be the sizes of the monitored
elderly person to improve the accuracy of the method. In
this paper, we adopt the automated way of LET extrac-
tion for unknown scenes, presented by Hung et al. (8) (9)

To do that, we capture the foregrounds and trajecto-
ries of the monitored elderly person moving around the
scenes. The sizes of foregrounds are extracted and kept
in each cell buffer for clustering to generate an appropri-
ate LET for the cell. The initial setup is straightforward
and can be performed in an automated manner (8) (9). It
allows users without technical knowledge to customize
the fall detection system for the different elderly and
under various camera viewpoints. The flowchart of LET
extraction process is shown in Fig. 3.

3.2 People Detection Foreground, segmented
by GMM (26), is enhanced by applying morphological op-
erators such as open and close to eliminate pepper noise
before being labeled by connected component algorithms
(CCA). Isolated foreground regions labeled by CCA are
so-called blobs. After these preprocessing steps, a pool
of N blobs {B1, B2, ..., BN} is created for the algorithm
of people detection.

We search in the pool of blobs to find a head candi-
date and then group blobs in the neighborhood of the
head candidate to form a person. The common labeling
order of CCA is from top to bottom and subsequently
from left to right of images. People are supposed to be in
upright poses. Consequently, the blob with smallest la-
bel is more likely the head candidate. LET of the cell in
which the head candidate appears provides the tentative
size of detected person {WT , HT } or the tentative area
in which the person appears. All blobs whose centroids
satisfy the spatial constraint posed by LET more likely
belong to the person. They are grouped together for
accumulating their densities and extracting the bound-
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LOOP

IF N > 0

Head Candidate← Blob with smallest index = Bsi

Density ← Density(Bsi)

P ← Position(Bsi) = (m, n)

LET ← T (m, n) = {WT , HT }
Spatial Constraint← (m, n, WT , HT )

IF N > 1

sum ← 0

LOOP in N blobs

IF Bi satisfies Spatial Constraint

Select Bi for grouping

Update the boundaries of detected person

Density ← Density + Density(Bi)

Remove Bi from the pool of blobs

sum← sum + 1

END

END LOOP

N ← N − sum

Update the pool of blobs

END

Take density ratio D by Eq. 2

IF D > Threshold

Confirm ’A person is detected’

Mark a rectangular box for detected person

END

ELSE

Exit LOOP

END

END

Fig. 4. The algorithm of detecting people from the
pool of blobs

aries. We take the ratio of the total density to the size
of the appropriate LET by the following formula (8).

D =
Total Density

WT × HT
· · · · · · · · · · · · · · · · · · · · · · · · · (2)

We confirm a detection if the density ratio exceeds a
particular threshold. Please refer to Table 1 in the study
of Hung et al. (8) for selecting the threshold of 0.3. We
update the pool of blobs by removing blobs of detected
people. In the next search, the head candidate is associ-
ated with the blob with the smallest label remaining in
the pool. The process of searching for head candidates
and grouping blobs in the neighborhood of head candi-
dates is continued until there is no blob remaining in the
pool. The algorithm of people detection is summarized
as pseudo code in Fig. 4.

3.3 Feature Computation In this paper, we
propose using the feature vector composing of the mea-
sures of humans’ heights and occupied areas to discrim-
inate three typical states: standing, sitting, and lying.
We realize that it is not necessary to estimate exactly
how many squared meters a person is in. An approx-
imate estimation is good enough for this application,
in turn, facilitating the real-time performance. To this
end, we suggest using two orthogonal views to simplify
the estimation of humans’ occupied areas. Two cameras
are in oblique viewpoint settings whose fields of view are
relatively orthogonal, as shown in Fig. 5. The occupied
areas are roughly estimated by the product of the widths
of a same person observed in the two orthogonal views.
Suppose that the person appears in the cell (m, n) in the
first view with the size of {W1(m, n), H1(m, n)}. We also
observe this person in the cell (p, q) in the second view

Fig. 5. Two orthogonal views for the estimation of
humans’ occupied areas

with the size of {W2(p, q), H2(p, q)}. The occupied area
is estimated as the following.

OA(m, n, p, q) = W1(m, n) × W2(p, q)· · · · · · · · (3)

However, the estimated occupied areas by Eq. 3 vary
across the viewing window because of the camera per-
spective. As discussed in Section 3.1, LET hold the
perspective information and can be used for the per-
spective normalization. We extract the LET T1(m, n) =
{WT1(m, n), HT1(m, n)} in the cell (m, n) in the first
view and T2(p, q) = {WT2(p, q), HT2(p, q)} in the cell
(p, q) in the second view. The occupied area of LET can
be estimated by the following formula.

OALET (m, n, p, q)=WT1(m, n)×WT2(p, q) · · · (4)

We take the ratio of the occupied area of detected
person to that of an appropriate LET for perspective
normalization, leading to a promising feature, so-called
normalized occupied area NOA.

NOA =
OA(m, n, p, q)

OALET (m, n, p, q)

=
W1(m, n) × W2(p, q)

WT1(m, n) × WT2(p, q)
· · · · · · · · · · · · ·(5)

It is noted that LET are defined as the sizes of a stand-
ing person appearing in the vicinity of detected person.
The normalization in Eq. 5 is not only to cancel the
perspective but also to take the features of standing peo-
ple as the baselines. In other words, the normalization
measures the distance between the features of detected
people and the appropriate LET (in standing states).
Therefore, NOA is both lower and upper bounded and
does not depend on the cell index. The cell-index nota-
tion of NOA in Eq. 5 are removed for simplicity. NOA
is also highly relevant to the three typical states because
of the feature-state relationship. A person lying on the
ground occupies a larger area than standing and sitting.
The occupied area in sitting state is, in general, larger
than that in standing states.

NOAStanding < NOASitting < NOALying · · · · (6)

However in practice, poor foreground segmentation,
occlusion, and human body upper limb activities, might
cause the estimation of NOA in standing and sitting
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Fig. 6. Time-series human state transition

states by Eq. 5 to be quite similar. Fortunately, the hu-
mans’ heights are significantly different and can be used
to discriminate standing states from sitting and lying
states.

The estimation of humans’ heights is highly sensitive
to the occlusion that is frequently happened in the in-
door environments mainly by the furniture. However,
under two relatively orthogonal views, we realize that
people are partially occluded in one view but likely visi-
ble in the other one. The height of people should be the
maximum of the height estimations from the two views.
Like the feature of occupied area, the height must be
normalized to that of an appropriate LET for perspec-
tive cancellation. The estimation of normalized height
is summed up by the following formulae.

NH1 =
H1(m, n)
HT1(m, n)

NH2 =
H2(p, q)
HT2(p, q)

NH = Max(NH1, NH2) · · · · · · · · · · · · · · · · · · · (7)

In summary, we have the feature space composing of
normalized heights and normalized occupied areas that
is separable for three typical states of humans. We will
discuss and demonstrate this property in Section 4.2.

3.4 Fall Event Inference It is impossible to rec-
ognize human actions in a single frame or few frames
since actions have temporal structures. Hence to make
the fall event inference, we eye on the states of the elderly
person in a period of time. In this paper, three typical
states Standing (ST), Sitting (SI) and Lying (LY) are
taken into consideration. A time-series analysis of hu-
man state transition shown in Fig. 6 that is similar to
the state transition graph in the study of Cucchiara et
al. (20) is adopted. Table 1 sums up all actions, which can
be inferred from the time-series analysis of human state
transition. In general, all state transitions are allowed.
However, for the specific application dedicated to the el-
derly, the direct transition from LY to ST states is quite
improbable. The elderly often make the transitions in a
gentle way from LY to SI and then to ST states.

Suppose that we keep states of the monitored elderly
person in N frames for making event inference in a
probabilistic manner. The instant state classified in

Table 1. Actions can be inferred from the time-
series analysis of human state transition

Next States

Current States ST SI LY

ST Standing or Walking Sitting down Falling

SI Standing up Sitting Lying down

LY NA Getting up Lying

START

Update the pool of N states

Delete the oldest state

Add the latest state

stable state = argmaxx{P (x);ST, SI, LY }
IF (current stable state == ST )&(stable state == LY )

A Fall probably happened

start counter ← true

counter ← 0

current stable state← stable state

END

IF start counter == true

IF (stable state == LY )&(current stable state == LY )

counter ← counter + 1

END

END

IF counter > Threshold

Confirm the Fall

start counter ← false

END

IF Other state transitions happen

current stable state← stable state

END

END

Fig. 7. The time-series analysis of human state
transition

each frame is not reliable for detecting state transitions.
Therefore, we suggest using stable states and unstable
states, instead of instant states. Only one out of three
states, i.e., ST, SI, and LY, appearing in the window
of N frames with the highest probability, is the stable
state. The others are defined as unstable states.

Stable State = argmaxx{P (x); ST, SI, LY }
· · · · · · · · · · · · · · · · · · · · · · (8)

where, P (x) the probability of observing the state x
in the window of N frames, evaluated by frequentist
paradigm, with x ∈ {ST, SI, LY }. Direct transitions
between two stable states are not allowed. A state tran-
sition must undergo an unstable state before reaching
its corresponding stable state, as illustrated in Fig. 6.
When a state transition is in progress, the probability of
observing the current stable state gradually decreases.
Meanwhile, the probability of observing one of the other
unstable states slightly increases. The state transition
is confirmed upon the generation of a new stable state
by Eq. 8.

In this paper, we are interested in detecting fall in-
cidents rather than other events. In consideration of
the definition and characteristics of a fall as discussed in
Section 1, a fall event can be inferred by a direct tran-
sition from standing to lying states and subsequently
an observation of staying in the lying state in some mo-
ments. Therefore, we dedicate a special attention on the
aftermath of such state transitions to confirm a fall by
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(a) falling forward (b) falling backward (c) carrying object (d) putting off the coat

(e) losing balance (f) failing to sit on a chair (g) lying on a sofa (h) sitting

(i) falling to the sofa (j) falling from the sofa (k) doing housework (l) crouching with occlusion

Fig. 8. Examples of typical fall incidents and confounding events

verifying the duration of staying in the lying state after
the state transition happened. The time-series analy-
sis of human state transition to make inference of fall
incidents is summarized as pseudo code in Fig. 7.

4. Performance Evaluation and Compari-
son

4.1 Multi-view Fall Dataset For fair compar-
isons with existing methods of fall detection, the rec-
ommended methodology of performance evaluation is to
conduct the experiments on the same dataset (9). In this
paper, we use the “Multi-view fall dataset” recently re-
leased by Auvinet et al. (1), which was adopted in the
experiments of two latest studies (2) (3). Consequently, it
is fair to compare the performance between our proposed
method and the two methods.

For the effort of making this dataset available in public
for research purposes, real fall situations are not applica-
ble due to the issue of privacy protection. Simulated falls
were performed by an experienced clinician in the field
of health care for the elderly, and were spotted simulta-
neously from eight inexpensive IP cameras with a wide
angle to cover all the room. Consequently, the images
are highly distorted. The dataset consists of 24 scenar-
ios showing 24 fall incidents and 24 confounding events
(11 crouching, 9 sitting, and 4 lying on a sofa). Vari-
ous kinds of falls are demonstrated, i.e. falling forward,
falling backward, losing balance, and falling to furniture.
Confounding events include crouching, kneeling, carry-
ing objects, and doing housework, etc. Camera settings
and spatial arrangement, information of multi-camera

synchronization, calibration parameters, and event an-
notation for all scenarios are provided in their study (1).
Examples of typical simulated fall incidents and con-
founding events are shown in Fig. 8. Video sequences
from Cameras 2 and 5 are used in this paper since these
two views are relatively orthogonal.

4.2 Linearly Separable Feature Space It is
stated in Section 3.3 that the proposed feature space is
separable for three typical states of humans. This sec-
tion will discuss, demonstrate this statement, and find
the decision boundaries for the state classification.

Since LET are defined as the sizes of standing peo-
ple in local image patches, the normalization process
takes the features of standing people as the baselines.
It creates the distance measures between the features
of detected people and the appropriate LET (in stand-
ing states). Thus, normalized heights, NH , of standing
people should be approximate 1. For people in sitting
and lying states, normalized heights are much smaller
than 1. It is possible to distinguish standing states from
sitting and lying states only based on the feature of nor-
malized height. To discriminate lying states from sitting
states, occupied area is a strong discriminative feature.
Apparently, a person in lying states occupies a larger
area than in sitting states. As a result, there exist two
linear decision boundaries separating the feature space
for three states of standing, sitting, and lying.

To demonstrate our discussion and to find the decision
boundaries, we use the ninth scenario of the dataset for
training purpose. In this scenario, the man approaches
to the chair after entering the scene. He sits on the chair
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(a) Discriminating ST state from SI state (b) Discriminating ST state from SI and LY states

(c) Discriminating SI state from LY state (d) Feature Space with modified decision boundaries

(e) Time-series evolution of normalized height (f) Time-series evolution of normalized occupied area

Fig. 9. Feature space of the ninth scenario with decision boundaries found by support vector machines

for a while and stands up before falling to the ground.
The annotation of this scenario provides the state label
in each frame. We calculate the feature vectors for ev-
ery frame in combination with the corresponding state
labels to create the training data.

Both the training data sketched in the feature space
in Fig. 9 (d) and the above discussion show that it can
be linearly separated. Therefore in this paper, two-class
support vector machines (SVM) are adopted to find the

decision boundaries for separating the three states. We
make three following experiments in training SVM to
find the decision boundaries. Firstly, standing states are
separated from sitting states by a nearly vertical line in
Fig. 9 (a). Secondly, we combine sitting and lying states
as one class. The second class of SVM is the standing
state. The decision boundary separating the two classes
is given in Fig. 9 (b). Thirdly, the decision boundary for
sitting and lying states is found in Fig. 9 (c) as a nearly
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horizontal line.
The results of experiments in training SVM quite fit to

our above discussion, except the one in Fig. 9 (b). How-
ever, it is clear to see some outliers in the training data of
lying states, impairing the obtained decision boundary
in Fig. 9 (b). The decision boundary in Fig. 9 (a) indi-
cates that normalized heights of people in sitting states
cannot be greater than 0.7. This observation is also true
for normalized heights of people in lying states. How-
ever, the decision boundary in Fig. 9 (b) creates a region
in which normalized heights of people in both sitting and
lying states are well greater than 0.7. It is not reasonable
in practice since the heights of people in sitting and ly-
ing states must be much smaller than in standing states.
Therefore, the decision boundary for separating standing
states from sitting and lying states in Fig. 9 (b) should
be a nearly vertical line, like the one in Fig. 9 (a). We
make the modification for the obtained decision bound-
aries based on our prior knowledge of humans’ heights,
as shown in Fig. 9 (d). It leads to the generation of the
thresholds for normalized heights and occupied areas,
being 0.65 and 2, respectively. Fig. 9 (e) and Fig. 9 (f)
show the time-series evolution of normalized heights and
normalized occupied areas with obtained thresholds in
the ninth scenario, respectively. In Fig. 10, we provide
the visual results of state classification of the first and
third scenarios in Multi-view fall dataset and the time-
series evolution of each feature to further confirm the
validation of the obtained thresholds.

Width and height are estimated by the horizontal
and vertical sides of rectangular bounding boxes, respec-
tively, not depending on human states, standing, sitting,
and lying. Therefore, estimated widths of people in sit-
ting and lying states are usually larger than actual ones,
so-called the estimation error. However, such estima-
tion errors only make the estimation of NOA of people
in sitting and lying states larger. It fits to our obser-
vation in Eq. 6. Hence, such estimation errors do not
influence on the performance of our method. In addi-
tion, the state classification implemented by using SVM
is also to deal with the estimation errors. In experiments
on the dataset containing limited challenges in the real
world, we do not find any case in which the estimation
errors affect to the performance of our method.

4.3 Performance Evaluation and Comparison
To evaluate the performance of our method and

to compare it with two state-of-the-art methods (2) (3),
tested on the same dataset, we compute sensitivity and
specificity as the follows.

Se =
TP

TP + FN

Sp =
TN

TN + FP
· · · · · · · · · · · · · · · · · · · · · · · · · · · · (9)

where
( 1 ) Se, the sensitivity
( 2 ) Sp, the specificity
( 3 ) TP , True Positive, the number of falls correctly

detected
( 4 ) FN , False Negative, the number of falls not de-

Table 2. Performance comparison between our
method and two state-of-the-art methods (2) (3),
tested on the same dataset

Sensitivity (Se) Specificity (Sp)

Our method 95.8% 100%

Auvinet et al. (3) 80.6% 100%

Rougier et al. (2) 95.4% 95.8%

tected
( 5 ) TN , True Negative, the number of normal ac-

tivities not detected as a fall
( 6 ) FP , False Positive, the number of normal ac-

tivities detected as a fall
High sensitivity means that most fall incidents are cor-

rectly detected. Similarly, high specificity implies that
most normal activities are not detected as fall events. A
good fall detection method must achieve high values of
sensitivity and specificity.

Our method detects 23 out of 24 fall incidents in the
whole dataset. It only fails in the 22nd scenario in which
the person is sitting on a chair and suddenly slips to the
floor. Our method recognizes it as the lie-down event
instead of a fall incident. No normal activity detected
as a fall is reported in our experiments. The sensitivity
and specificity are 95.8% and 100%, respectively.

We compare the performance between our method and
two state-of-the-art methods (2) (3), tested on the same
dataset, in Table 2. It is noted that the results of the
method proposed by Auvinet et al. (3) are reported with
a network of three cameras. The sensitivity can be
boosted to 100% if a network of more than four cameras
is employed. However, both methods are high computa-
tional costs. Rougier et al. (2) reports the implementa-
tion of 5 fps and argues that this frame rate is sufficient
for detecting fall events. Auvinet et al. (3) presents the
GPU implementation to realize their method in real-
time. Meanwhile, our method composing of low-cost
modules is implemented in real-time in a common desk-
top PC † and achieves very competitive performance.

5. Conclusions

We have presented a novel method of fall detection
that plays as a central part of the second generation of
PERS for aiding the elderly living alone. The novelty
lies in the feature space composing of humans’ heights
and occupied areas to discriminate three typical states
of humans, i.e. standing, sitting and lying. It is the
fact that the heights of people in standing states are
greater than in sitting and lying states. Moreover, Peo-
ple in lying states occupy a larger area than in sitting
and standing states. Therefore, the proposed feature
space is linearly separable for these three states. Fall
incidents can be inferred from the time-series analysis of
human state transition.

In implementation, our aim is to develop the method
with simple but effective modules to achieve both real-
time and good discrimination performance. We propose
using two orthogonal views: (1) to simplify the estima-
tion of occupied area, and (2) to improve the reliability
† CPU: Intel Core i7 950 3.07 GHz, 3 GB Ram
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(a) The 1st scenario (b) The 3rd scenario

Fig. 10. State Classification and the time-series evolution of normalized height and occupied area of
the 1st and 3rd scenarios

of computing the feature vector based on sizes of silhou-
ettes in the presence of occlusion. People are partially
occluded in one view but visible in the other one. The
feature vector is normalized by the size of an appropri-
ate LET to cancel the camera perspective and to realize
the linear separability of the proposed feature space.

In performance evaluation, a good method of fall de-
tection is associated with high sensitivity and specificity.
We choose Multi-view fall dataset that only includes sim-
ulated falls by an experienced clinician in the health care
for the elderly, to test our method for fair comparison
with existing methods. The results of our method reach

to 95.8% of sensitivity and 100% of specificity. It outper-
forms two state-of-the-art methods (2) (3), tested on the
same dataset. In the future work, we will test on real
falls of the elderly in real home environments to further
validate the performance of our proposed method, es-
pecially the influence of the estimation errors. We also
take the situation of falling from sitting positions like the
one in the scene 22 into account by labeling the furniture
areas. If the person is sitting or lying in the furniture
areas, i.e., sofa or bed, and suddenly lying on the ground,
such lying-down events should be detected as falls.
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