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Abstract Tracking is a major issue of virtual and aug-

mented reality applications. Single object tracking on

monocular video streams is fairly well understood. How-

ever, when it comes to multiple objects, existing methods

lack scalability and can recognize only a limited number of

objects. Thanks to recent progress in feature matching,

state-of-the-art image retrieval techniques can deal with

millions of images. However, these methods do not focus

on real-time video processing and cannot track retrieved

objects. In this paper, we present a method that combines

the speed and accuracy of tracking with the scalability of

image retrieval. At the heart of our approach is a bi-layer

clustering process that allows our system to index and

retrieve objects based on tracks of features, thereby

effectively summarizing the information available on

multiple video frames. Dynamic learning of new view-

points as the camera moves naturally yields the kind of

robustness and reliability expected from an augmented

reality engine. As a result, our system is able to track in

real-time multiple objects, recognized with low delay from

a database of more than 300 entries. We released the source

code of our system in a package called Polyora.

Keywords Augmented reality � Multiple object

tracking � Image retrieval

1 Introduction

Object tracking is an important issue for many applications,

especially in the domains of virtual, mixed, and augmented

reality. The base process to visually integrate virtual ele-

ments on real ones is the following: a camera captures a

scene. A registration technique provides the relative pose

of the camera with respect to the target object. A standard

CG method renders virtual contents from the appropriate

point of view and integrates it on the camera image.

Examples of such applications are numerous and include

augmenting the pages of a book, playing cards, and trading

cards. In these cases, as often, the camera is the only

registration device available.

Beside adequate display and computing hardware, high

quality augmented reality requires reliable and flexible

tracking method. Many methods have been proposed for

visual registration (Lepetit and Fua 2005). However, when

it comes to tracking multiple natural objects, they all have

drawbacks. A classical approach to track multiple objects is

to detect a part common to all objects, typically a highly

contrasted square, and use the registration to ease searching

the characteristic area in the database. However, the

necessity of marking target objects severely restricts the

application domain of such tracking approaches. Recently,

wide-baseline point matching has been demonstrated to

effectively detect and track naturally textured objects

(Ozuysal et al. 2007; Wagner et al. 2008). However, when

multiple objects are to be recognized, these approaches try

to match each known object in turn. Such a linear com-

plexity, both in computation and memory requirements,

limits the number of known targets to a few objects (Park

et al. 2008).

Image retrieval approaches address the scalability issue.

These methods can deal with millions of images (Nister
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and Stewenius 2006). However, they focus on static images

and are not designed for real-time tracking.

In this paper, we propose a real-time tracking method

that integrates image retrieval techniques to achieve both

accurate tracking and scalability with respect to the number

of target objects. More specifically, we exploit information

available in video stream, as well as the variability of

feature descriptors, to efficiently establish correspondences

with, index, and retrieve target objects. We also integrate

dynamic learning of new viewpoints to increase detection

robustness and accuracy. As a result, our method can

reliably augment more than 300 objects individually, as

depicted by Fig. 1.

To better describe the algorithmic contribution of our

paper, let us sketch a typical image retrieval system. The

first step is detection of features such as SIFT (Lowe 2004)

or MSER (Matas et al. 2002), to summarize an image with

a set of vectors. These vectors are quantized, turning fea-

tures into visual words. Vector quantization involves

clustering a large number of representative features,

forming a visual vocabulary. Once an image is expressed

as a bag of word, it can be indexed and searched for using

information-retrieval techniques (Nister and Stewenius

2006; Sivic and Zisserman 2003). However, quantization

errors combined with feature instability reduce retrieval

performances. A key contribution of our work is a method

that exploits quantization effects and the nonlinear varia-

tions of features to improve retrieval and to reach a real-

time computation speed.

Our method observes the variability of descriptors over

several frames, by tracking the keypoints from frame to

frame. Inspired by Ozuysal et al. (2007), we capture the

behavior of features during the training phase. The

collected data allow our method to create a stabilized

visual vocabulary. At runtime, our system matches full

point tracks, as opposed to single features obtained from

single frames, against training data. It yields a stable entry

that can serve as index key. Because the set of detected

features tends to vary with the viewpoint, we dynamically

learn new views while tracking an object. As a result,

detection of an object under a pose related to one that has

previously been tracked is likely to succeed.

At a higher level, our contribution is a multiple nat-

ural object tracking system designed to scale well with

the number of targets. Several of its properties make it

perfectly suited for augmented reality applications: It can

process live video stream, it can deal with a large

number of target objects, adding new targets to the

database is perceptually immediate, initialization is fully

automatic, and it is robust to viewpoint changes, illu-

mination effects, partial occlusion, and other typical

tracking hazards.

We demonstrate the effectiveness of our approach with a

toy application that can augment more than 300 pictures

and that allows users to interactively augment with virtual

elements a large number of new objects.

2 Related work

Pixel level registration techniques have today reached

maturity (Lucas and Kanade 1981; Baker and Matthews

2004). Their association with point selection methods to

concentrate computation efforts on interesting pixels forms

the basis of many computer vision tasks such as object

tracking (Harris and Stephens 1988; Shi and Tomasi 1994).

Tracking requires initialization, which remained an issue a

few years ago. Because marker-based approaches such as

ARToolkit did not suffer from this drawback, they quickly

became popular in the augmented reality community (Kato

et al. 2000). Among the many improved versions proposed,

ARTag, for example, can recognize 2002 different markers

(Fiala 2005).

In parallel, feature point methods grew powerful enough

to achieve wide-baseline matching. The most representa-

tive of them is probably Lowe’s scale invariant feature

transform (SIFT) (Lowe 2004). Establishing correspon-

dences between views with strong differences in pose and

illumination addresses many issues, including tracking

initialization. Approaches such as SIFT aim at providing

features robust to viewpoint changes, from a single image.

Lepetit et al. (2004) proposed a real-time tracking by

detection method that learns the changing appearance of

keypoints from synthetically generated views. Ozuysal

et al. (2006) rely on off-line incremental tracking on a

training sequence to model the complex appearance

Fig. 1 To produce this result, our system detects, identifies, and

tracks the photographs visible on the input video stream. Each picture

is augmented with its corresponding virtual element, precisely

registered. The stack of pictures visible on this image contains about

300 images. Our system can recognize all of them. Users can also

augment new objects by simply showing them to the camera and

clicking. Tracking and augmentation start right away
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changes of a partially transparent object. Taylor et al.

(2009) consider a lighter descriptor and compensate its

sensitivity to viewpoint changes by modeling a target

object with a large number of features, extracted from an

artificial set of views. Uchiyama and Saito (2009) use a

descriptor specifically designed for text documents and

learn both new keypoints and changing descriptors online.

Our method also updates the models as new views are

observed.

The success of wide-baseline feature matching also

opened the way to large-scale image retrieval (Sivic and

Zisserman 2003; Obdržálek and Matas 2005). Using

vector quantization of descriptors, recent approaches

effectively retrieve images from databases containing

more than a million of images (Nister and Stewenius

2006; Philbin et al. 2007; Jégou et al. 2008). Interest-

ingly, Philbin et al. (2008) note that quantizing several

descriptions of the same physical point can be unstable.

They tried to capture this instability by synthesizing

affine and noisy deformations of image patches, inspired

by a classification-based approach to wide-baseline

matching (Lepetit et al. 2004). However, these attempts

did not improve recognition performance, maybe because

of an inappropriate choice of image perturbation, as the

authors explain. Following a similar goal, our method

observes descriptors tracked over several frames to mit-

igate the effect of their variability.

Feature matching has also been used to detect and track

multiple 3D objects (Park et al. 2008). Recently, Wagner

et al. proposed a method implemented on mobile phones

that guarantees a minimum frame rate (Wagner et al.

2009). However, these methods are restricted to a limited

number of objects, typically under 10. We focus on scaling

the database size, while keeping a detection delay com-

patible with tracking tasks.

3 Method

The primitives upon which our method is built are feature

detection and tracking. Keypoints1 are detected at each

frame, and matched between consecutive frames, using

normalized cross-correlation (NCC). When such a simple

NCC fails to find correspondences, the Lukas-Kanade

(KLT) algorithm tracks lost features (Baker and Matthews

2004). As a result, we obtain stable tracks of features, and a

patch is extracted at every frame, as illustrated by Fig. 2a.

During a first training phase, we collect many features

from a video stream. We cluster their descriptors with a

recursive K-mean tree, as suggested by Nister and Stewe-

nius (2006) and as depicted by Fig. 2b. This allows us to

summarize a descriptor as the leaf it corresponds to or as an

integer, since leaves are numbered.

In a second training phase, we collect tracks of features.

The tree quantizes each descriptor, turning the feature tracks

into leaf tracks. We then compute for each track a histogram

of leaves. Because the training sequence contains effects

such as motion blur, perspective distortion, or moving

specular reflections, the collected histograms capture the

descriptor’s instability, including the quantization effects of

the tree, in presence of such hazard. The set of collected

histograms forms a dictionary, or a visual vocabulary. To

reduce its ambiguity, similar histograms are recursively

merged until ambiguity reaches an acceptable level.

At run-time, the whole history of each tracked feature is

summarized by the most relevant histogram found in the

dictionary. Each descriptor passes through the tree and

ends up in a leaf, forming a histogram of leaves, as

(a) (b) (c) (d)

Fig. 2 Computing visual words by tracking features. a Features are

tracked across frames, and patches are collected. b Patches pass

through a tree and distribute over its leaves, forming a histogram.

c The histogram is compared to the ones observed during the training

phase. We use them as visual words and visualize them with

geometric shapes. In this example, the histogram matches a word

represented with a star. d Some of the visual words detected on an

input image

1 In this text, we define a keypoint as a location of interest on an

image, a descriptor as a vector describing a keypoint neighborhood,

and a feature as both a keypoint and its descriptor.
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depicted by Fig. 2b. We then simply search for the most

similar trained histogram (Fig. 2c). The advantage of this

technique is double: It allows the algorithm to exploit both

the variability of descriptors, which is usually viewed as a

problem, and the large amount of data collected by tracking

points over multiple frames. Figure 2d shows an image

and some of its detected features, with their associated

histograms, represented as geometric shapes.

Indexing and retrieval follow a standard term frequency-

inverse document frequency (TF-IDF) weighting scheme

on a bag of word model. In simpler words, a table maps

dictionary entries to indexed objects. For retrieval, the table

is looked up to collect all the objects on which the visual

words of the query appear. The candidates are then ranked

using an appropriate criterion.

The few best results are selected as candidates for

geometric verification. If an object is successfully detected,

matches are propagated to the next frame using motion

flow estimation. Currently, tracked objects are automati-

cally appended to the list of candidates for next frame’s

geometric verification stage. Because we eliminate outliers

during detection and propagate matches, few outliers

remain on the next frame. Geometric verification therefore

becomes simpler.

The successfully verified objects then pass the dynamic

learning stage in which observed but unmatched features

are integrated to the object model. Our algorithm takes care

of not integrating features that do not actually belong to the

object, and stops adding keypoints when enough are

known. As a result, keypoints appearing on new views

contribute to tracking and detection, making them robust

and reliable.

The remaining of this section details our system’s

components.

3.1 Low-level: repeatable sparse motion flow

Our method relies on a particular type of motion flow

estimation in which the tracked points are detected in a

repeatable way. It means that a point that has previ-

ously been tracked is supposed to be tracked again

when viewed from another angle. Stability and repeat-

ability are the main goals of well-known feature

detectors such as SIFT, SURF, or FAST (Lowe 2004;

Bay et al. 2006; Rosten and Drummond 2006). In our

experiments, we used a GPU implementation of SIFT

(Wu 2008).

To compute the motion flow from frame to frame, we

first detect the keypoints in both frames. We then compare

their local neighborhoods using NCC. This quickly pro-

vides the flow of most features. However, when the feature

detector detects a point on the first frame but fails to detect

it on the following one, the KLT algorithm searches its new

location. The decision to turn to KLT is taken when the

best found correlation drops below a threshold.

The result of this process is a set of stable tracks. The

KLT tracking mitigates the feature detector’s failures,

while the feature detector ensures repeatability and pre-

vents the KLT tracker from drifting. In our experiments,

this approach can track efficiently hundreds of points over

hundreds of frames.

The choice of using NCC rather than SIFT descriptor is

motivated because the invariance provided by the SIFT is

not necessary for computing sparse motion flow. NCC

gives reliable result and is consistent with the KLT tracker.

The KLT tracker is well adapted to track SIFT features,

because a local maximum in the difference of Gaussian

implies low autocorrelation in all directions, which is

precisely what KLT relies on.

3.2 Describing tracked keypoints

At this stage, our goal is to index target objects and to

retrieve the ones visible on the current frame, relying on

stable feature tracks. To do so, we aim at constructing a

dictionary mapping feature tracks to indexed objects. Our

approach has two stages of clustering: at descriptor level

and at track level.

3.3 K-mean tree

The descriptors extracted during the training sequence are

clustered using a recursive K-mean, as proposed by Nister

and Stewenius (2006). All descriptors are first clustered by

a K-mean algorithm, with K = 4, and using the L2 norm as

a distance measure. The four resulting subsets are then

recursively clustered in the same way, in turn. Recursion

stops either at depth 8 or when fewer than 64 descriptors

remain.

3.4 Learning and exploiting feature variability

Our system tracks points and assigns them to a leaf of the

recursive K-mean tree, making it possible to observe

groups of leaves showing the same physical point. During

the second training stage, such groups are collected from a

video sequence and accumulated into histograms. Such

histograms can capture the descriptor’s nonlinear vari-

ability that might be caused by viewpoint, illumination, or

noise effects.

Straightforward usage of these histograms as index keys

is not possible due to the many redundant elements col-

lected during training. We address this ambiguity issue

with a second clustering stage. If two histograms are too
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difficult to discriminate, they are merged, creating a new,

larger histogram. In practice, we compute the dot product

between two normalized histograms and use agglomerative

clustering. We recursively merge the histogram pair with

the highest normalized dot product and stop when it is

lower than a threshold (typically 0.1, see Sect. 4). Merging

two histograms a and b into a new histogram x gives:

x(l) = a(l) ? b(l), where a(l) is the number of times leaf

l appears in a. At the end of this process, the remaining

histograms form a stable visual vocabulary.

Although these histograms seem very large, due to the

large number of leafs on the tree, most entries are null.

Storing them in a sparse manner is quite compact.

3.5 Feature tracks as index keys

We build an inverted table mapping leaves of the recursive

K-mean tree to trained histograms. Given one or several

leaves observed when tracking a point, it becomes possible

to efficiently fetch the most similar learned histogram. By

doing so, our system assigns an index key to a point track,

as opposed to a single feature. The following equation

defines the score of the histogram h for the track t:

sðt; hÞ ¼ 1
P

l tðlÞ
1

P
l hðlÞ

X

l

tðlÞhðlÞidfðlÞ; ð1Þ

where t(l) (respectively h(l)) is the number of features

assigned to leaf l in the track t (respectively in the

trained histogram h). The term idfðlÞ ¼ � logðf ðlÞ
F
Þ; where

f(l) denotes the number of trained histograms involving leaf

l, and F the total number of trained histograms. This score

gives more importance to rare and discriminative leaves

and decreases the weight of frequent ones. If f(l) = 0, it

means that the observed feature does not match trained

data. In this case, the track is ignored.

The complexity of directly computing this score grows

linearly with the track size. Therefore, we remember for

each track the scores of potential matching histograms.

When a new frame is available, the scores are updated

regarding only the newly observed leaf. This incremental

approach allows our system to efficiently exploit long

tracks.

Soft visual word assignment, as suggested by Philbin

et al. (2008), can easily be achieved by considering not

only the histogram with the highest score, but also the ones

at least 90 % as good.

3.6 Object detection

To detect target objects entering the field of view, the

database is queried with all point tracks visible on the

current frame. As explained, each point track is assigned to

a visual word. The histogram of the observed visual words

in a frame forms a query q. The score of stored object d for

the query q is as follows:

sðq; dÞ ¼ 1
P

w qðwÞ
1

P
w dðwÞ

X

w

qðwÞdðwÞidfðwÞ; ð2Þ

where q(w) (respectively d(w)) is the number of words w in

q (respectively in d), and idf(w) the negative log of the

proportion of the stored frames that contain the visual word

w. The few objects with the best scores are kept as can-

didates for geometric verification.

From a computational point of view, we reduced the

complexity of repeating this algorithm at each frame using

incremental queries. We keep the scores of objects found in

the previous frame and update them with features that

appeared or disappeared. The complexity of the query

therefore depends on the number of feature addition or

subtraction rather than the total number of features present

on the current view.

3.7 Geometric verification

Our algorithm builds a list of candidates for geometric

verification. It is initialized with the set of objects suc-

cessfully tracked on the previous frame. Then, the list is

extended with at most three other candidates selected by

their query score (Eq. 2).

For each object in the list, our system tries to match

object and frame features in two different ways: based on

the tracks index values (Sect. 3.5), or propagated from

previous frame if the candidate has been detected suc-

cessfully. In the latter case, propagated correspondences

contain usually less outliers than the ones resulting from

wide-baseline matching. Because the ratio of outliers has

an impact on the required number of RANSAC iterations

and computation speed, our system uses for geometric

verification at most 20 % of new correspondences. In

practice, our system first gathers the correspondences from

last frame and then finds at most 20 % more matches with

the candidate target. When verifying an object that has

not been matched on previous frame, only the noisier

wide-baseline correspondences are used, requiring more

RANSAC iterations.

Once the set of potential correspondences is created, the

geometry consistency is verified. Each object has a geo-

metric model, in our implementation either homography or

epipolar constraints. For detection, the RANSAC (Fischler

and Bolles 1981) algorithm handles the potentially high

outlier rate. During tracking, the outlier rate is controlled,

and the least median of squares (LMedS) algorithm can

optionally replace RANSAC.
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3.8 Dynamic model update

Once an object is detected, it can be tracked on views that

may strongly differ from the reference one recorded in the

database. In that case, some keypoints disappear and others

appear. In that case, our system incrementally improves the

model by adding appearing features. For this task, the

difficulty is to determine whether a feature actually belongs

to the object or not.

Our algorithm first eliminates geometrically inconsistent

keypoints. It scans all the features matched over more than

a fixed amount of frames (typically 5). It also skips key-

points assigned by the RANSAC processes to an object. To

determine to which object a keypoint could be attached, the

nearest keypoint already assigned to an object in the cur-

rent frame is considered. If its distance to the candidate

keypoint exceeds a threshold (typically 30 pixels), the point

is rejected: It probably belongs to the background. Other-

wise, the geometric consistency between the corresponding

object and the considered keypoint is verified over all the

previous frame in which the point has been tracked. To do

so amounts to verifying that the inverse transformation of

the keypoint by the homography computed for the object

remains consistent over the frames. In our implementation,

we check that the point on previous frames, once back-

projected, falls within 3 pixels of current frame’s

backprojection.

To prevent the number of keypoints associated to

objects from growing too large, we limit it to a constant

(typically 3000). Before adding a new keypoint to an

object, the system draws a random number between 0 and

the limit. If that number is below the current point count,

the keypoint is skipped. This approach gives a logarithmic

behavior to the system: The rate of feature addition is high

if the object is not yet well modeled and slows down as

more and more features are integrated. Other strategies to

do so could consider the viewpoint to encourage a uniform

distribution of learned features over viewpoints or avoiding

adding keypoints in regions already well covered. We

consider that the optimal strategy depends on the final

application. In our case, this simple method is sufficient.

Dynamically, updating the database breaks the incre-

mental computation of the objects scores described in Sect.

3.6. Score computation starts from scratch everytime the

database is updated. The impact of this effect is minor

compared to the benefit of remembering new views for

later detection.

4 Results

We present in this section the experiments we conducted

to evaluate our system. We focused on retrieval and

tracking capabilities. We finally present a toy application

demonstrating that our system fits augmented reality

requirements.

4.1 Retrieval evaluation

The goal of this experiment is to evaluate our system’s

ability to retrieve objects visible in a video stream. To do

so, we ignore the geometric verification stage and con-

centrate on the best ranked candidate returned by the query.

We differentiate two scenarios. If the time to enter the

objects in the database is not an issue, it is possible to

include their views in the two clustering stages. This yields

good performance, at the cost of a longer and less flexible

procedure to add the objects to the database. Because some

applications cannot tolerate such a long process, we tested

our method with and without including the target objects in

the learning data. We call the tested scenarios trained and

untrained.

Evaluation was conducted on video sequences showing

13 test objects, three of which are depicted by Fig. 3. The

image resolution used is 640 9 480. The first sequence

does not show the test objects. It is used to build the visual

vocabulary. The second sequence shows the objects in turn.

Thirteen objects are manually added to the database. The

third sequence is a test sequence. It also shows the objects,

at most one at a time. Ground truth reference is obtained by

manually noting the object visible on each frame. To test a

scenario, we use every frame of the test sequence as a

query to the database. We count the number of frames in

which the first result matches the ground truth.

In the trained scenario, the visual vocabulary is built

using both the first and the second sequences. It implies

that the resulting K-mean tree is more complete. The

untrained scenario does not use the second sequence for

building the visual vocabulary. In this case, the system has

to deal with previously unseen features.

Each scenario is tested twice. Once using directly the

leaves of the K-mean tree as index keys, and once using our

approach.

Table 1 presents the evaluation results. In both scenar-

ios, our method improves retrieval. The results obtained in

the trained scenario show that even when quantization

errors are avoided by using the target objects to create the

visual vocabulary, our method can still learn some

remaining variability and provide a performance gain of

about 4.5 %.

4.2 Tracking objects

For this experiment, we printed 325 photographs. We

entered the pictures one by one into the system, by cap-

turing them on a uniform background with a handheld
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video camera. It is important to note that adding a new

picture to the system is perceptually instantaneous, because

the K-mean tree and histogram clusters remain constant.

The user points the target to the camera, clicks, and

tracking can start.

Based on the populated database, the system is able to

recognize and track randomly chosen pictures. The rec-

ognition delay is short, typically 2–3 frames. Once detec-

ted, the photographs are tracked, subject to neither drift nor

jittering, as depicted by Fig. 5.

During the training stage, we transformed 125 pictures

in their digital form with random homographies to generate

synthetic views, out of which about 5 million features were

extracted. We recursively applied K-mean clustering with

Fig. 3 Pairs of query (left) and

retrieved (right) images that our

approach made possible to

retrieve, without any geometric

verification. The direct tree

indexing approach failed to

handle these frames, as opposed

to our method. In the untrained

scenario, our method improves

the number of successfully

retrieved frames of about 5 %,

as detailed by Sect. 4.1 and

Table 1. These three pairs are

selected among these 5 %. In

the case of the first row, motion

blur causes SIFT detector

instability. In the second case,

specular reflections alter the

object appearance. In the third

case, the perspective distortion

and the moving specular

reflection perturb retrieval if no

tracking information is used
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Fig. 4 Changing the threshold that stops histogram merging during

the second clustering phase. If the threshold is chosen above 0.06, our

method improves retrieval rate by 4–6 %. This graph was obtained in

the untrained scenario, as described in Sect. 4.1

Table 1 To evaluate performance, we count the number of frames

correctly retrieved for a test sequence.

Success/direct Success/stabilized

Untrained 2,240 2,351 (?5.0 %)

Trained 2,389 2,497 (?4.5 %)

The rows correspond to the scenarios described in Sect. 4.1. The

column Success/direct contains results obtained without using our

method. The column Success/stabilized presents the results when

using our approach. This table clearly shows that, for both scenarios,

our approach improves performance
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K = 4, stopping at a maximum depth of 8 or when less

than 32 descriptors remained in a branch. The resulting tree

has 85,434 nodes, 63,955 of which are leafs. During the

second training phase, 655,970 histograms were extracted

from new synthesized views. The agglomerative clustering

process produced 39,749 histograms.

The tree and cluster set produced during training allow

our system to efficiently establish correspondences

between an input view and the objects stored in the data-

base. It is interesting to observe that the system can deal

with objects that have not been used for training. We

verified this behavior by populating the database with 200

unseen objects, in addition to the 125 ones used for

training. Our system kept its performance and could suc-

cessfully detect and track almost all of the 325 targets,

except a few.

Out of 325 pictures, the system fails to detect only 10: 6

among the learned 125 image set and 4 among the 200

other ones. A few of these pathological pictures are illus-

trated by Fig. 6.

When several pictures look similar, the system might be

confused. For example, we took two pictures of the same

building, taken from a slightly different points of view. In

this case, the system tends to recognize the building rather

than the pictures themselves. At detection, it sometimes

mixes up both pictures. The tracking is stable in the sense

that, once the system selected one picture, it will stick to

that choice as long as the target can be tracked. This

behavior is acceptable for augmented reality applications.

Figure 7 depicts the ambiguity of keypoints. The his-

togram shows that, within our database, most of the key-

points have a quantized appearance that occurs only a few

times. Therefore, they provide a strong support to the

Fig. 5 Tracking photographs on a desk. The frames are selected from

a test sequence in which the user moves a camera above a desk on

which lies several tens of photographs. The system recognizes and

track the pictures when they enter the field of view. The white grid

represents the detected homography. The red marks show the newly

established correspondences and the green marks the ones propagated

from previous frame

Fig. 6 Cases of failure. The system fails to handle these images, due

to the specific nature of the texture (a), low contrast due to

atmospheric effects (b and c), and poorly discriminative texture

(b and c). In total, only 10 pictures out of the 325 ones cannot be

detected effectively. Half of them are not recognized at all, while the

three others are detected only on unoccluded, sharp, and frontal views

Fig. 7 This histogram shows the ambiguity of the index dictionary.

The horizontal axis shows the number of occurrences. The vertical

one shows the number of index keys. For example, 11213 features

have their own index key. The most ambiguous feature appears at 200

places. This figure clearly shows that the indexing scheme is

discriminative because most features are assigned to a unique index

key, and there is only a small number of ambiguous features that

appear often
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retrieval process. However, Fig. 7 also shows that a few

descriptors appear very often. These points are less dis-

criminative but can still bring information for registration.

4.3 Dynamic update evaluation

Dynamically inserting new keypoints in the database as

they are discovered under new viewpoints allows the sys-

tem to match more features while detecting the target in a

similar viewpoint. To evaluate our system’s robustness to

viewpoint changes, and to quantify the improvement given

by the dynamic update, we conducted the following

experiment. We first randomly picked a picture that we

mounted on the rotating support depicted by Fig. 9. We

then measured the number of matches validated by the

RANSAC process in four different cases:

1. Tracking, prior to learning;

2. Detection, prior to learning;

3. Tracking with dynamic learning enabled;

4. Detection, after learning.

In the case of tracking, we slowly rotate the support

starting from 0� to 90�. Every 15�, we count the number of

correct matches. In the case of detection, we orient the

support, completely occlude the object to break tracking,

show the object again, and inspect the matches. Tracking

with dynamic learning enabled enriches the database with

the keypoints visible on new views. Repeating the

detection experiment after that learning process yields

much better result because the model to match with is more

complete.

Figure 10 shows the result of this experiment conducted

on four different target pictures. When no dynamic learning

is used, the tracking and detection curves start from the

same point. Tracking is then more performant, as expected.

The number of matches for 0� varies from one picture to

the other due to their different appearance. Picture #3 is

clearly the most textured one.

While tracking and learning, many points are added to

the model, yielding a high number of matches. However,

some of these matches might not be reliable. The keypoint

could have been detected outside of the object, or it might

have been created by a specular reflection. The detection

after learning is more relevant, because only the features

that can actually be matched are counted. The number of

matches after learning is consistently and significantly

higher than before learning. By automatically completing

the target representation, dynamic learning allows the

system to recognize the target in more difficult situation. In

the case of picture 1, straight detection fails as early as 30�.

After updating the model, detection is still reliable at 60�.

4.4 Application to augmented reality

To demonstrate our system’s suitability to AR applications,

we used it to augment pictures with virtual drawings. The

database of target objects contains the 325 photographs

Fig. 8 In these frames selected from a longer sequence, our system

automatically augments the picture with a virtual hole through which

a hand passes. The virtual hand appears stable on the moving

photograph, despite illumination changes, partial occlusion, camera

defocus, and specular reflection

Fig. 9 Some of the images used for the experiment described in Sect. 4.3. The target is attached to a rotating support. The rotation angles are,

from left to right, 0�, 30�, 60�, and 75�. These angles are represented on the horizontal axes of Fig.10
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mentioned in the previous section. When the system rec-

ognizes a known picture, it overlays it with its virtual

counterpart warped with the appropriate homography.

As depicted by Fig. 8, our method’s stable tracking

yields convincing augmented reality, despite hazards such

as viewpoint changes, illumination changes, partial occlu-

sion, camera defocus, and specular reflection. The frames

of Figs. 8 and 11 were produced directly and in real time

by our system fed with a live video stream (except

cropping).

As illustrated by Fig. 11, when several photographs

appear in the field of view, our system augments them as

long as they appear large enough on the input image. Since

an homography is computed for each target picture, the

system can augment them even if they move

independently.

The frame rate of our system is typically 6–8 frames per

second. The computationally heaviest component in our

implementation is the SIFT feature detector, despite its

implementation on the GPU.

5 Conclusion

In this paper, we presented an image retrieval approach to

multiple object tracking. We demonstrated its effectiveness

and scalability by running experiments on more than 300

target objects. Our system is user friendly because it is

responsive, fully automated, and reliable. For example,

augmenting a new object simply amounts to pointing the

camera at it and clicking. The augmentation starts imme-

diately, and the internal object representation is automati-

cally improved as new views become available. Detection

for tracking initialization is 100 % automatic and has a low

delay. Our system can process live video streams and is

robust to partial occlusion, viewpoint changes, illumination

effects, and other hazards.

These properties make our approach ideal for aug-

mented reality applications that overlay virtual elements on

real objects. Possible applications include:

• animating pages of books,

• tagging virtual messages on real walls,

• virtually annotating objects for maintenance tasks,

• augmenting card games with virtual scenes,

• augmenting panorama views with landmark names.

To encourage further development of such AR appli-

cations, we provide the source code of our system in a

packaged named Polyora.2

We demonstrated the validity of our approach with

planar objects. We believe it could be quite adapted to

handle more complex shapes, because of its multi-stage

Fig. 10 These charts show the

number of matches as a function

of rotation angle, as explained

in Sect. 4.3. The four charts

correspond to four different

pictures, the last of which is

visible on Fig. 9. These four

cases show that the dynamic

learning process significantly

improves the system’s detection

abilities

2 https://github.com/jpilet/polyora.
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learning process, which could handle the varying appear-

ance of features lying on nonplanar objects. In future work,

we plan to replace the homography by a full 3-D trans-

formation to extend the proposed system to any type of

textured object. We also aim to reduce our system’s

dependency on texture. Currently, only very textured

objects can be detected easily. Taking into account the

geometric relationship of keypoints could extend indexing

and retrieval to printed text or uniform objects with a

specific 3-D shape, such as a chair or a tripod.
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