Paper:

Vehicle Localization Based on the Detection of Line Segments

Vehicle Localization Based on the Detection of Line Segments
from Multi-Camera Images

Kosuke Hara™ and Hideo Saito**

*Research & Development Group, Denso IT Laboratory
CROSSTOWER 28F, 2-15-1 Shibuya, Shibuya-ku, Tokyo 150-0002, Japan
E-mail: khara@d-itlab.co.jp
**Department of Information and Computer Science, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
E-mail: saito@hvrl.ics.keio.ac.jp
[Received June 20, 2015; accepted September 25, 2015]

For realizing autonomous vehicle driving and ad-
vanced safety systems, it is necessary to achieve ac-
curate vehicle localization in cities. This paper pro-
poses a method of accurately estimating vehicle posi-
tion by matching a map and line segment features de-
tected from images captured by a camera. Features
such as white road lines, yellow road lines, road signs,
and curb stones, which could be used as clues for ve-
hicle localization, were expressed as line segment fea-
tures on a two-dimensional road plane in an integrated
manner. The detected line segments were subjected
to bird’s-eye view transformation to transform them
to the vehicle coordinate system so that they could be
used for vehicle localization regardless of the camera
configuration. Moreover, an extended Kalman filter
was applied after a detailed study of the line observa-
tion errors for realizing real-time estimation. Vehicle
localization was tested under city driving conditions,
and the vehicle position was identified with sub-meter
accuracy.

Keywords: localization, multi camera system, line seg-
ment detection, autonomous driving

1. Introduction

Environment recognition using on-vehicle sensors has
been studied for realizing autonomous vehicle driving and
advanced safety systems. The demand for autonomous
driving [1] has been increasing in the recent years; lane
detection is necessary to determine the vehicle’s drive tra-
jectory for autonomous driving. For simple lane struc-
tures such as those of highways, conventional white line
detection method [2] can be used for lane detection. How-
ever, lane detection in cities is difficult owing to chal-
lenges such as complicated lane structures and road signs,
influence of occlusion by vehicles and people, and diffi-
culty in recognition because of insufficient resolution of
sensors in a wide crossing. In particular, barrier-free side-
walks slope toward roads, and it is difficult to identify the
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boundary of the roads simply by tracing the curb height.
Therefore, the conventional method [1] for autonomous
driving in cities is to keep the vehicle on a lane by prepar-
ing a road map with detailed information of lanes and
signs and using accurately estimated vehicle position [1].
Highly accurate GPS is used for accurate vehicle localiza-
tion. In fact, real-time kinematics GPS and GPS employ-
ing correction data from quasi-zenith satellites with accu-
racy of several centimeters have been used in autonomous
driving experiments [3]. However, the use of such GPS in-
volves problems such as high cost, unstable performance
in cities with tall buildings that can affect satellite signal,
and direct influence from map deviation caused by plate
movement. To solve these problems, a method of estimat-
ing the relative position of a vehicle on a map by match-
ing measurement data from on-vehicle sensors, such as
cameras and laser scanners, and road maps and images
has been proposed [4-15]. This technology identifies the
place where the measurement data from the on-vehicle
sensors match the landform on the maps or images as the
vehicle position. Unlike technologies using accurate GPS
or white line detection, this method takes advantages of
many clues in a complicated environment, thus improv-
ing the accuracy. In this paper, we propose a method of
real-time vehicle localization by matching a map and im-
ages from on-vehicle multi-cameras.

2. Related Studies

Vehicle localization methods that involve matching in-
formation from on-vehicle sensors with road maps and
image databases can be classified into three types, de-
pending on the data used. One type of localization meth-
ods employs aerial images (or satellite images), while an-
other type employs images captured by on-vehicle cam-
eras in the past. The third type of methods employs line
maps or spline curve maps.

In vehicle localization using aerial images [4], vehi-
cle position is identified by matching road paint in on-
vehicle camera images with that in aerial images. How-
ever, the problem in this method is that a large amount
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of high-quality data has to be accumulated before the
method can be applied commercially. A commercial
aerial photograph is created by connecting many images,
and a connection error can result in the deviation of the
absolute position of vehicle. Further, in aerial images,
stopped/running vehicles and shadows of buildings may
cause occlusion, making it difficult to maintain stable
quality; hence, the definition of quality standards itself
may be a problem.

The method in which past on-vehicle camera images [5,
6] are used can handle not only roads, but also buildings
and other objects around roads. In general, the association
between image features is robust, but this method has the
same problem in terms of data volume as that in the case
of the aerial photograph method. In addition, it is difficult
to check the content of descriptors visually and assure the
quality. In the field of robot research, a combination of
laser scanner and camera has been studied [7, 8], but it
is difficult to apply the results of these studies because
the features of road environments are different from those
applied in the studies.

In the method employing road maps containing line
segments and spline curves, the maps of white road lines,
yellow road lines, road signs, street gutters, curb stones,
etc. are used. Creation of such complicated maps became
possible because of the development in surveying tech-
nology [16] brought about by the Mobile Mapping Sys-
tem (MMS). Since these maps can be considered as an
extension of the maps used in conventional car navigation
systems, handling of data format and quality standards is
rather easy. Autonomous vehicle driving and lane keeping
assist are examples of the applications of vehicle localiza-
tion. For these applications, road boundary information
such as white road lines, curb stones, and road signs are
necessary to determine the driving trajectory [17]. This
kind of information is saved in the form of line segments
to determine the trajectory. Since these data are often re-
quired for many applications, there are high expectations
that maps will be developed with the data. Some vehi-
cle localization methods use such road maps. For exam-
ple, Lane LOC [9] uses stereo cameras to detect individ-
ual white road lines and curb stones and compares them
with those in the maps to identify vehicle position. Sim-
ilarly, Nedevschi et al. [10] used stereo cameras to detect
individual white road line boundaries, curb stones, and
stop lines. However, the problem with these methods is
that the detection system configuration is complicated be-
cause different detectors had to be prepared to detect dif-
ferent targets such as white lines and curb stones. The
use of stereo cameras has an advantage in that they can
detect curb stones and road surface; however, the disad-
vantage in using them is that the cost increases if many
stereo cameras are required. In another study [11], a sin-
gle feature detector with a single eye was used. However,
in this study, a white load line detection technology was
used; this technology might not be able to handle cases in
which a vehicle makes a turn at a complicated crossing.
On the other hand, in some methods, feature matching
was performed without using a features detector: these
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include a method of using a laser scanner’s reflection in-
tensity for features matching [12] and a method of using
the structure tensor from a single-eye camera for features
matching [13]. Both methods optimize the vehicle posi-
tion by using a particle filter and have an advantage in
that the system configuration is relatively simple than in
the case in which different detectors are required to detect
different features. However, particle filters often require
a high computational load, which is a disadvantage for
implementing filters in a vehicle. Actual autonomous ve-
hicle driving in cities [15] often involves a combination
of the method of using images taken from the vehicle [6]
and the method of using line segment maps [9]. Although
front and rear cameras are used, the two methods used
different cameras and identified the vehicle position indi-
vidually; the identified positions were merged to one by
using a vehicle model. Therefore, the algorithm of this
method is not suitable for a multi-camera configuration.
The method closest to the present one was studied by Yu
et al. [14]. As in the present method, their method used
line segment features. However, since their method ex-
presses vehicle position and orientation using six degrees
of freedom, point features and vertical edge features of
buildings are also required. A vehicle moves on a two-
dimensional plane though the plane may have a gradient;
hence, it has only three degrees of freedom. Therefore,
the method can be simplified. Further, in this method, op-
timization is realized through RANSAC by using a com-
plicated combination of the lines and points, and hence,
the frame rate is slow.

This paper proposes a method of accurate vehicle lo-
calization based on comparison of line segment maps and
line segment features extracted from multi-camera im-
ages. Different road features such as white road lines,
yellow road lines, road signs, curb stones, etc., which can
be used as clues for vehicle localization, are expressed
as line segment features on a two-dimensional road plane
in an integrated manner. The detected line segments are
transformed by bird’s-eye view transformation to the ve-
hicle coordinate system in order to make the processing
independent of the camera configuration. In addition, an
extended Kalman filter is used after a detailed examina-
tion of line observation errors to realize real-time estima-
tion. The accuracy of vehicle localization was evaluated
through driving experiments in cities to ensure sub-meter
accuracy.

3. Vehicle Localization by Multi-Camera
Images

In this method, line segment features are extracted and
compared with those obtained from maps to predict the
vehicle position and correct the prediction (Fig. 1). A
series of images from many cameras mounted on a ve-
hicle and the rear wheel speed are used as the inputs. The
output is the position of the vehicle on the map. Three
degrees of freedom of the position and orientation are
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Fig. 1. The flowchart of the localization system.

estimated. First, line segments are extracted from each
camera image and transformed into the vehicle coordinate
system by bird’s-eye view transformation. Errors are cal-
culated by associating the transformed line segments and
those in the maps, and the extended Kalman filter is used
to update the vehicle position. It is assumed that the ini-
tial location of the vehicle can be obtained from GPS or
by some other method; the present study focuses on up-
dating the location of a running vehicle.

Front and rear cameras are used. Cameras with wide
angle lenses have advantages in terms of camera rotation
operations and are recommended for many SLAM stud-
ies [18]. Since vehicle localization is also necessary when
a vehicle makes a turn at a crossing, a multi-camera con-
figuration with no overlap in the view fields of the cam-
eras, which can therefore be regarded as camera with a
wide angle lenses, will make a large contribution to realiz-
ing highly accurate vehicle localization. Further, a previ-
ous study [19] has shown that when front and rear cameras
are placed symmetrically, the accuracy is better than in
the case of other camera configurations. In practical use,
relatively high performance cameras are usually mounted
on the front and rear sides of a vehicle as a safety system
because the vehicle mostly moves forward and backward.
Therefore, the present camera configuration is a practical
choice. Each step of processing is explained below in de-
tail.

3.1. Design of Coordinate Transformation

Here, the features obtained from cameras mounted on
the vehicle and the design of handling three-dimensional
line segment maps are explained. In the present method,
a map coordinate system, a vehicle coordinate system,
and camera coordinate systems are used (Fig. 2). First,
a three-dimensional point p, in the n-th camera coordi-
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Fig. 2. Setting of the coordinate system.

nate system is transformed to a point p, in the vehicle
coordinate system through rotation and translation trans-
formations that represent camera location. R, and t,,
are calibrated in advance and can be used as known pa-
rameters.

p=Rl. (pe,—te,) - - - - .. ... (D

Next, the point p, in the vehicle coordinate system is
transformed to a point p,, in the map coordinate system.
In the present method, three degrees of freedom are es-
timated at time ¢ by introducing the yaw rotation of the
vehicle R’ and the translation on a plane t,,. An actual
road will have a gradient, and hence, the vehicle posi-
tion and orientation have to be defined with six degrees
of freedom. However, considering too many variables in
the estimation will cause degradation of accuracy. There-
fore, based on the fact that the line segment map has
three-dimensional coordinates, the vehicle was assumed
to move on a plane, which was an approximation of a lo-
cal area in the maps. In other words, taking into account
the width of a general street, a local map area of scale
3.5 m around the vehicle is assumed to be a plane, and the
gradient R/, of roll and pitch is calculated. The vehicle po-
sition in the height direction can also be calculated from
the plane. Then the coordinate transformation can be ex-
pressed by the following formula by taking into account
the road gradient.

po=RR p,+t, . ... ... ... Q2

3.2. Prediction with the Vehicle Movement Model

In this section, a model of the vehicle movement is de-
scribed, and prediction of the movement state and an error
model are explained. Many recent vehicles have sensors
to detect right and left rear wheel speeds v} and v}, re-
spectively. Application software can utilize the speed data
through a CAN network. Odometry employs such data
for estimating vehicle motion, i.e., for calculating the es-
timated vehicle position at the time when the image was
captured. Let x' = (x',)", 0") be the vehicle position and
orientation at time 7 with rotation R/, and translation t/ ..
Then the estimated vehicle position is given by the fol-
lowing relations:
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(2) (b)

Fig. 3. The estimation error in vehicle movement.

X=fx'u)+e .. ... ... ... 3

f(x o) =

Vv —1 Vv —1 t
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— !
X ——sin (6"1) + —sin (6" + 0'ar)
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Function f is given by the same formula as the one used
for a two-wheel robot model [20]. It is also assumed
that the estimation error & follows a Gaussian distribu-
tion with average 0 and covariance Q'. Control variable
u' = (', ®")T includes the vehicle speed v/ = (Vi + v} ) /2
and the angular velocity @' = (Vi — v} )/2d,, both of
which are calculated from the rear wheel speed. Further,
d, is the distance between the wheels.

In general, estimation error Q' is often represented by
a diagonal matrix as the parameter. However, if Q' is de-
signed to be a diagonal matrix, the error ellipse expands
as circle on the road plane; this behavior is very differ-
ent from that observed during actual vehicle movement
(Fig. 3(a)). Therefore, the major errors were assumed to
be contained in the observed control variable and to be ex-
tended as the vehicle moved (Fig. 3(b)). This assumption
is expressed by the following formula in the first order of
Jacobian df/ou’.

of ot
Qt:(WQ”W )Ad+QCAt B )

Here, Ad is the distance moved by the vehicle in unit time,
and Ar is the time difference.

Q, is a diagonal matrix that represents the errors in the
control variables, and Q. is a diagonal matrix that repre-
sents minor deviation errors from the model.

3.3. Line Extraction from Multi-Camera Images

Line segments were extracted using LSD (Line Seg-
ment Detector) [21], which is a highly accurate high-
speed detection method, from multi-camera images ob-
tained from the on-vehicle cameras. LSD was also used
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Fig. 4. Line detection with multi-camera images.

previously for a study of the real-time SLAM [22]. Fig. 4
shows the results of the application of this method to the
on-vehicle camera images. The blue lines indicate the de-
tected lines. The figure shows the line segments of the
white road lines and sidewalks and also those of street
gutters and curb stones. Thus, line segment detection can
detect most of the characteristic objects on the road, and
this method can be used for vehicle localization. Since
the cameras were mounted horizontally on the vehicle,
objects located at a certain height or higher were not in-
cluded in the processing. In addition, the lines resulting
from the reflection of the vehicle itself were identified and
removed from the images.

3.4. Bird’s-Eye View Transformation of Lines in
Images

Line segments detected from the cameras were handled
in the vehicle coordinate system to ensure that changes
in the camera configuration did not affect the subsequent
processing. For this purpose, the line segments in the im-
ages were projected onto the vehicle coordinate system
by bird’s-eye view transformation, and their error distri-
bution was examined. The rotation and translation repre-
sentations R,., and t,., of the camera positions and the
internal parameters of the cameras were assumed to be
known, and the road surface was assumed to be flat in the
vicinity of the vehicle. The start point ny and end point n,
of a line segment in a normalized image were transformed
by the bird’s-eye view transformation b to g, and qe, re-
spectively, in the vehicle coordinate system. The start and
end points are transformed in the same way, and hence,
we write them as ¢ = b(n) omitting the subscripts. Then
the transformation formula is given as below.

Ry, = {rij} tve, = [tott)” © o o o . . (5)
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qx =
—nyty (n,r33—r13) - (nur33 —r13) Fnuty (nyr33—ra3) —te(nyr3z —ra3)
(nyr31—ra1) (nursz—ri3) — (nurs1—riy) (nyrs3—ra3)

qy =
—nyty(nyr31—rin) + 1 (nr3i —rin) Fnuty(nyr3i —ra) —te(nyrsi—ran )
(nyr3z—ra3) (nurai—rin) — (nursz—ri3) (nyrsi—rap)

For realizing position correction with an extended
Kalman filter, it is important to develop a model of ob-
servation errors for the detected line segments. The error
model obtained after the bird’s-eye view transformation
of the line segments was examined in terms of the de-
tected position and length of the line segments. Note that
the camera lens is the major source of errors in position
detection using images. In general, the error increases as
the distance of the area from the center increases. The er-
rors persist despite distortion correction [a]. Hence, the
standard deviation is expressed by the squared distance
from the image center. Further, since many pixels are
used to extract a line segment, the longer line segments
should be more accurate. Therefore, based on the relation
between the number of samples and errors in a Gaussian
distribution, standard deviation is assumed to be inversely
proportional to the square root of line segment length /.
Based on these assumptions, covariance matrix R; of the
errors of the end points on images is expressed using the
following diagonal matrix, where c¢; and c; are constants.

diag [(clnﬁ + 02)2, (clng + cz)z}

R, = ] N ()

In addition, the covariance matrix R in the vehicle co-
ordinate system obtained after bird’s-eye view transfor-
mation is expressed by the following formula in the first
order of Jacobian db/dn.

ob_ ob’

Figure 5 shows an example of the bird’s-eye view
transformation of the line segment shown in Fig. 4. In
the figure, the black lines are the map lines, and the blue
lines are the transformed line segments; the red eclipses
are error eclipses of the end points of the line segments.
The figure shows that there are small errors in the case of
the line segments on the near side and in the center of the
width direction, and there are large errors in the case of
those on the far side. In our system, line segments with
large covariance are threshold-processed so that they are
not used in the correction of vehicle position. Thus, line
segments with large errors in the peripheral area of an im-
age or small line segments are removed on a priority basis.

3.5. Association Between Map Lines and Image
Lines

For correcting the vehicle position estimation, the asso-
ciation between the line segments on images q; and q, and
those on maps my and m, is studied. The end points of the
line segments in the vehicle coordinate system are trans-
formed to points in the world coordinate system through
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Fig. 5. Bird’s-eye view transformation of lines and observa-
tion errors.
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by estimating X’ using the vehicle movement model. The
transformed points can be then associated with the map
line segments located nearby. However, since a white road
line has two edges that are both detected as line segments,
association with nearby line segments could lead to wrong
association with the wrong edge. Hence, the thickness of
a color on both sides of a line segment is used to calculate
the direction of the color gradient, which is then matched
to the direction of the map line segment (Fig. 6). This
can largely reduce erroneous association. To summarize:
(1) the projection distance from an image line segment
to a map line segment should be smaller than a threshold
value. (2) The angle difference should be smaller than a
threshold value. (3) The direction of the gradient of the
map line segment should be the same as that of the image
line segment. Since a line is sometimes blurred and de-
tected as a set of small lines, a single image line segment
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(a) Projection distances

(b) Point to point distances

Image line-
segment

Map line-
segment

Fig. 7. Errors between line segments on map and on image.

is associated with multiple map line segments that satisfy
the association conditions.

The detected line segments of objects such as blurred
white lines and cracks on the road do not correspond to
any map line segments. If these are directly associated
with the map line segments, they may lead to incorrect
vehicle localization. Hence, vehicle localization correc-
tion, which will be described in the next section, was con-
ducted based on bisquare weighting, a robust estimation;
the correction was performed for the projection distance
and angle in the association of the line segments. This
prevents the influence of incorrect associations if the per-
centage of correct associations is sufficiently larger than
that of incorrect associations.

3.6. Vehicle Position Correction

Errors between the line segments on the map mg and
m, obtained through association and those on the image
gs and q, are defined to correct the vehicle position. The
orientation of each line segment is rather accurate because
it is calculated from many pixels, but the positions of the
end points of the line segments are not accurate. This
is because a line segment often terminates randomly. In
particular, when a long line such as center line is partly
observed in an image, it is not clear which part of the cen-
ter line is observed. Moreover, when a curve such as the
boundary of a sidewalk is observed, it is detected as mul-
tiple broken lines. Therefore, two types of errors were
defined (Fig. 7).

The end points of a line segment in the image were pro-
jected onto the corresponding line segment in the map,
and the projection distance was used to define basic errors
(Fig. 7(a)). This projection was made mainly for white
road lines, curb stones on the right and left sides of the
vehicle, and stop lines extending in a direction perpen-
dicular to vehicle motion. Using this projection method,
even a part of a long line or partly broken lines can be
used for correcting vehicle localization. When the equa-
tions of the straight lines calculated based on the map line

segment are dyx, + ayyy +ac = 0 and /a +aj = 1, the
projection error §, of the end point q of the map line seg-
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ment is expressed by the following formula.

R(R, q+t,, ]

| 8)

i) :[ax ay, 0 ac]{

The observation error can be calculated as R, by the

abovementioned covariance matrix R, in the direction
perpendicular to the map line segment.

Rp:[ax ay]Rq[ax ay]T A )

Next, if the vehicle position estimation error is small,
the end point of a line segment on the map and that of a
line segment on the image should be close to each other.
Therefore, if the distance between these end points was
smaller than a certain threshold, the distance was also in-
cluded in the error (Fig. 7(b)). Then, from the dashed
white lines of edge points of sidewalks, the vehicle posi-
tion correction in the forward direction can be estimated.
The error of the end point is defined by the following for-
mula where R, is used as the observation error.

100
8y = [ 01 0 } (@—RIR (m—t,)) . (10)

Based on these definitions, an error vector & =
[51,71,51,72,...,8;1,8;2,...]T containing the errors ob-
tained from the association with multiple line segments
was defined, and the vehicle position x’ was corrected

with the extended Kalman filter.

4. Evaluation Results

Evaluation tests were conducted in cities using a test
vehicle with cameras mounted on it. The results on the
accuracy and the calculation speed of vehicle localization
are reported in this section.

4.1. Evaluation Environment

Two industrial-use cameras (Lumenera Lm225) were
mounted on the test vehicle, one on the front and another
on the rear side (Fig. 8), to collect driving data. Images of
size 1088 x 2048 were acquired every 100 ms, and they
were reduced to size 544 x 1024. Since the image pro-
cessing area was restricted to the road area in each im-
age, the actual processing area of the front camera was
229 x 1024 and that of the rear camera was 247 x 1024.
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The rear wheel speed data were obtained through CAN
from the sensors already mounted on the vehicle. The
wheel rotation period was about 33 ms, and vehicle mo-
tion estimation was continued until the next image was
acquired using the movement model described in Sec-
tion 3.2. The actual latitude and longitude of the vehicle
were obtained from RTK-GPS (Novatel OEM615), and
these data transformed to the map coordinate system, i.e.,
a plane rectangular coordinate system. Since the present
study focused on updating vehicle position, the true posi-
tion was used as the initial position of the vehicle. Further,
the present study did not focus on vehicle localization at
night or under bad weather conditions and the test driving
data were collected around noon on a sunny day in March.

Three test routes (Cases 1 to 3) were chosen near Shin-
Kawasaki Station where RTK correction was effective
(Fig. 9(a)). Each route included a turn at a crossing. In
Case 1, the route was 1.4 km long and included a land
bridge and a slope of about 3° gradient. In Case 2, the ve-
hicle made a left turn at a crossing and then drove along
a gentle curve. In Case 3, the vehicle made a right turn
and then drove into a narrow city street. Accurate line
segment maps were prepared for all the cases (Fig. 9(b))
by a specialized company. For creating the maps, mea-
surements were made using MMS. Reference points were
separately measured for verification, and comparison of
positions showed that the errors in the created maps were
within 0.1 m. The maps contained line segments repre-
senting white lines, yellow lines, road signs painted on the
roads, and other road features such as curb stones, road
gutters, and rain water inlets.

For the comparison of precision, a vehicle localization
system using laser scanner reflection intensity, described
in [12], was used as a reference. In [12], the intensity of
the reflection from a point group, obtained from a laser
scanner, is compared with the information obtained from
a map through normalized correlation, and vehicle posi-
tion is estimated with a particle filter. In this reference
system, raster map of laser reflection intensity was used,
and in the present method, line segment maps are used.
Hence, the method in [12] cannot be used directly in the
present method. Therefore, the reflection intensity levels
of the areas such as white or yellow lines where the reflec-
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tion is clearly stronger than on the road surface were set as
1 and that of the road surface was set as 0 in order to calcu-
late the normalized correlation. A laser scanner Velodyne
HDL32e was mounted on the roof of the test vehicle. For
achieving an appropriate S/N ratio of the reflection inten-
sity, the detection area within a radius of 15 m from the
vehicle was used for vehicle localization. In this area, the
road surface extends in all directions; there are about 17
layers in the vertical direction, and this can help realize
sufficiently high resolution.

4.2. Accuracy Evaluation of Vehicle Localization

For comparing vehicle localization results and true po-
sitions, the errors are classified as those along the motion
direction and those along the width direction. For appli-
cations such as autonomous vehicle driving or lane keep-
ing, the errors in the width direction should be minimized
to maintain the vehicle on the given lane. Table 1 lists
the average errors for each of the cases with front and
rear cameras or with only a front camera. The average er-
ror in the width direction with two cameras was 0.1 m or
smaller. The survey of the width direction errors for driv-
ing in cities in Reference [15] indicates that the total error,
including that caused by control and by vehicle localiza-
tion, should be 0.2 m or less. Further, Reference [23] sug-
gests that with regard autonomous parking operations, the
error should be 0.2 m or less. The average error in the
present method satisfies this requirement. Even when the
error in the driving direction is included, the total average
error is within 1 m. Although direct comparison is diffi-
cult because of different evaluation environments, differ-
ent sensors, and different maps, one can still say that the
present method achieves sufficiently high accuracy — as
high as or even higher than that of vehicle localization in
the studies in Reference [10].

Some examples of vehicle localization are shown in
Fig. 10. The green lines are the line segments extracted
from the images. The magenta lines are the segments
from the map projected onto the images based on the es-
timated vehicle position. Although calibration problems
persist, the maps and images overlap with each other if the
vehicle position is correctly estimated. Fig. 10(a) presents
a scene with complicated white lines and road signs, and
Fig. 10(b) shows a scene where the vehicle moves on a
land bridge with 3° slope. Fig. 10(c) shows a scene where
the vehicle is passing by a parked car; Fig. 10(d), a scene
where the vehicle moves on a narrow street; Fig. 10(e),
a scene that will be explained later. As all these figures
show, the vehicle position was correctly estimated.

Figure 11 shows the error distribution in Case 1. In
this figure, the errors are plotted for each instant of im-
age acquisition. The errors are distributed on and around
0. The errors in the driving direction (longitudinal po-
sition errors) are larger than those in the width direction
(lateral position errors) because there were no clues for
vehicle localization when driving on a long straight road.
When there are no clues on the map, or in other words,
when there is no change in landscape, large errors will not
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Table 1. Average errors in the estimated vehicle position.

(b)

Fig. 10. The map projected onto the image.
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Evaluation Paths | Distances [m] Methods E;t;r?lln] position zzzil?ﬁgﬁlnﬁ o

Proposed (Front + Rear) 0.049 0.21

Case 1 1381 Proposed (Front) 0.087 0.19
Laser based N/A N/A

Proposed (Front + Rear) 0.058 0.63

Case 2 534 Proposed (Front) 0.083 0.69
Laser based 0.059 1.10

Proposed (Front + Rear) 0.096 0.23

Case 3 148 Proposed (Front) 0.13 0.17
Laser based 0.053 0.16
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Fig. 11. Estimation error distributions.

pose a big problem in actual applications. On the other
hand, the errors in the width direction were large in some
cases when only one camera was used; Fig. 10(e) shows
an example where the error was caused when the vehicle
moved up a land bridge and made a turn at a crossing with
fewer clues. Errors attributed to odometry tend to be large
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when the vehicle makes a turn. If only a limited number
of clues are available, for example, because the crosswalk
paint is blurred, the error tends to be large. However, the
use of more than one camera was found to be effective be-
cause in this case, the rear camera captured the crosswalk
and prevented large errors.

The comparison with the laser method (Table 1 and
Fig. 11) is discussed here. In Case 3, the present method
and the laser method had almost the same accuracy. In
Case 1, the longitudinal position error became large when
the vehicle drove on a straight road near the land bridge,
and hence, subsequent vehicle localization became diffi-
cult. Further, in Case 2, the longitudinal position error
was large when the vehicle drove on a gentle curve. Be-
cause the present method can utilize clues that are inde-
pendent of laser reflection intensity, such as rain water
inlets, street gutters, and the end points of dashed white
lines, the longitudinal position errors can be corrected. On
the other hand, the combination of the method reported in
Reference [12] and the line segment maps did not provide
sufficient clues for the front side, thereby causing large
errors.

Line segment detection not only involves finding clues
of white road lines but also those of other features. To
examine the effect of the detection of other features, the
line segments of road structures such as curb stones, street
gutters, and rain water inlets were eliminated from the line
segment maps, and the present method was applied to the
maps that contained only road paints such as white lines,
yellow lines, and road signs. This additional experiment
was conducted with a vehicle with front and rear cam-
eras. The result shows that in Case 2, the lateral position
error was 0.065 m, and the longitudinal position error was
0.45 m; these were almost the same as those in the case of
the original maps. However, there was a large deviation in
vehicle position, and further estimation became difficult
when the vehicle took a turn at a crossing in Case 1 and
when the vehicle moved along a narrow street in Case 3.
It was thus shown that clues such as curb stones could
contribute to the improvement of the robustness.

The above results shows that the present method could
meet the lateral position error criterion of 0.2 m or less,
which is necessary to make commercial products, and
could thus realize highly accurate vehicle localization.
However, vehicle localization could be difficult in some
situations. First, on a road with fewer clues such as white
lines or curb stones, vehicle localization with this method
will be difficult. Similarly, on a road with many parked
cars that cover clues, the present method will be ineffec-
tive. In these situations, association between the map line
segments and image line segments cannot be obtained,
and the method has to rely on the odometry-based move-
ment model. If these situation persist, vehicle localiza-
tion errors will accumulate and exceed the criterion of the
association between the images and the maps; such asso-
ciation may require initialization by GPS. As in the case
of high-precision GPS, the present method cannot be ap-
plied in all environments. If the method is used for safety-
related applications such as autonomous vehicle driving,
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Table 2. Average calculation time of vehicle localization.

Calculation
time [ms]

Line segment extraction

13
(Front camera)
Line segment extraction

15
(Rear camera)
Localization 12
Total 41

numerous methods should be applied to compensate each
other’s disadvantages. Nighttime, backlight, and rain are
also problematic factors for cameras, and these factors
will be considered as future problems. Further, the line
segments of other moving cars or stopped cars, which are
not present in the given maps, are removed by threshold
processing and robust estimation; however, direct detec-
tion may stabilize system operation, and hence improve-
ment can still be achieved in future. It will be also nec-
essary to suppress error peaks by examining individual
cases.

4.3. Evaluation of Calculation Time

The average calculation time of the present method is
listed in Table 2. For vehicle localization, a PC with Intel
core 17, NVIDIA GeForce GTX750, and Windows 8 was
used, and only CPU was used for the calculation. The
calculation time did not include the drawing time. The
simulation software was implemented with MATLAB and
C. Since images were acquired every 100 ms, real-time
calculation was sufficiently feasible.

5. Summary

This paper proposes a method of estimating vehicle po-
sition accurately by matching line segment maps and line
segment features extracted from multi-camera images.
Clues for vehicle localization, such as white road lines,
yellow road lines, road signs, and curb stones were treated
in an integrated manner by extracting their line segment
features. The detected line segments were transformed
into the vehicle coordinate system by bird’s-eye view
transformation in order to realize processing independent
of the camera configuration. The extended Kalman fil-
ter was applied after a detailed examination of the line
segment observation errors to realize real-time vehicle lo-
calization. The accuracy of the localization was evalu-
ated by conducting driving experiments in cities, and the
results indicated that the localization was highly reliable
with sub-meter accuracy.
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