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Abstract We present a novel 3D reconstruction system
that can generate a stable triangle mesh using data from
multiple RGB-D sensors in real time for dynamic scenes.
The first part of the system uses moving least squares
(MLS) point set surfaces to smooth and filter point clouds
acquired from RGB-D sensors. The second part of the
system generates triangle meshes from point clouds. The
whole pipeline is executed on the GPU and is tailored to
scale linearly with the size of the input data. Our contri-
butions include changes to the MLS method for improving
meshing, a fast triangle mesh generation method and GPU
implementations of all parts of the pipeline.

Keywords 3D reconstruction - Meshing - Mesh zippering -
RGB-D cameras - GPU

1 Introduction

3D surface reconstruction and meshing methods have been

researched for decades in the computer vision and com-
puter graphics fields. Its applications are numerous and
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have practical uses in fields such as archeology [42], cin-
ematography [45] and robotics [31]. A majority of the
works produced so far have focused on static scenes.
However, many interesting applications, such as telepres-
ence [13, 37, 44], require 3D reconstruction in a dynamic
environment, i.e. in a scene where geometric and colori-
metric properties are not constant over time.

For most 3D reconstruction systems, the process can be
divided conceptually into three stages:

1. Data acquisition Traditionally, acquiring a real-time
3D structure of an environment using stereo or multi-
view stereo algorithms has been a challenging and
computationally expensive stage. The advent of con-
sumer RGB-D sensors has enabled the 3D reconstruc-
tion process to become truly real-time, but RGB-D
devices still have their own drawbacks. The generated
depth maps tend to be noisy, and the scene coverage is
restricted due to the sensor’s limited focal length,
making the following process stages more difficult to
achieve. Many reconstruction systems start with a
preprocessing stage to reduce some noise inherent to
RGB-D sensors.

2. Surface reconstruction The surface reconstruction

consolidates available 3D information to a single
consistent surface.

3. Geometry extraction After a surface has been defined,

it should be converted to a geometric representation
that is useful for a particular application. Some
commonly used formats are point clouds, triangle
meshes and depth maps.

Our work involves both surface reconstruction and triangle
mesh generation. We enhance a moving least squares
(MLS)-based surface reconstruction method to fit our
needs. We generate triangle meshes in the geometry
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extraction stage, since they are the most commonly used
representation in computer graphics and are view
independent.

1.1 Related works

We constrain the related literature section to 3D recon-
struction methods that can work with range image data
from RGB-D sensors and provide explicit surface geometry
outputs, such as triangle meshes. As such, view-dependent
methods are not discussed.

1.1.1 Visibility methods

Visual hull methods, as introduced in Laurentini [34],
reconstruct models using an intersection of object silhou-
ettes from multiple viewpoints. Polyhedral geometry
[20, 39] has become a popular representation of hull
structure. To speed up the process, Li et al. [36], Duck-
worth and Roberts [17] developed GPU-accelerated
reconstruction methods. The general drawback with those
approaches is that they need to extract objects from an
image background using silhouettes. In a cluttered and
open scene, this is difficult to do. We also may wish to
include backgrounds in reconstructions, but this is gener-
ally not supported.

Curless and Levoy [15] use a visual hull concept toge-
ther with range images and define a space carving method.
Thanks to the range images, background segmentation
becomes a simple task. However, space carving is designed
to operate on top of volumetric methods, which means that
issues with volumetric methods also apply here. Using
multiple depth sensors or multiple scans of scenes can
introduce range image misalignments. Zach et al. [52]
counters these misalignments by merging scans with a
regularization procedure, albeit with even higher memory
consumption. When a scene is covered with scans at dif-
ferent scales, fine resolution surface details can be lost.
Fuhrmann and Goesele [21] developed a hierarchical vol-
ume approach to retain the maximum amount of details.
However, the method is designed to combine a very high
number of viewpoints for off-line processing; as such, it is
unsuited to real-time use.

1.1.2 Volumetric methods

Volumetric reconstruction methods represent 3D data as
grids of voxels. Each volume element can contain space
occupancy data [12, 14] or samples of continuous functions
[15]. After commodity RGB-D sensors became available,
the work of Izadi et al. [28] spawned a whole family of 3D
reconstruction algorithms based on truncated signed dis-
tance function volumes. The strength of these methods is
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their ability to integrate noisy input data in real time to
produce high-quality scene models. However, a major
drawback is their high memory consumption. Whelan et al.
[50] and Chen et al. [10] propose out-of-core approaches
where reconstruction volume is moved around in space to
lower system memory requirements. However, these
methods cannot capture dynamic scenes. Newcombe et al.
[40], Dou et al. [16] and Innmann et al. [27] support
changes to the scene by deforming the reconstructed vol-
ume. These methods expect accurate object tracking, which
can fail under complex or fast movement.

Variational volumetric methods, such as those of
Kazhdan et al. [30] and Zach [51], reconstruct surfaces by
solving an optimization task under specified constraints.
Recently, the method of Kazhdan and Hoppe [29] has
become a popular choice with Collet et al. [13] further
developing it for use in real-time 3D reconstruction, albeit
utilizing an incredible amount of computational power.
Indeed, the global nature of the optimization comes with a
great computational cost, making it infeasible in most sit-
uations with consumer-grade hardware.

1.1.3 Point-based methods

MLS methods have a long history in data science as a tool
for smoothing noisy data. Alexa et al. [2] used this concept
in computer visualization to define point set surfaces (PSS).
These surfaces are implicitly defined and allow points to be
refined by reprojecting to them. Since then, a wide variety
of methods based on PSS have appeared—see Cheng et al.
[11] for a partial summary. In the classical formulation,
Levin [35] and Alexa et al. [3] approximate local surfaces
around a point as a low-degree polynomial. Alexa and
Adamson [1] simplify the approach by formulating a
signed distance field of the scene from oriented normals.
To increase result stability, Guennebaud and Gross [22]
formulate higher-order surface approximation while
Fleishman et al. [19] and Wang et al. [49] add detail-pre-
serving MLS methods. Kuster et al. [33] introduce tem-
porally stable MLS for use in dynamic scenes.

Most works to date utilize splatting [53] for visualizing
MLS point clouds. While fast, this approach cannot handle
texturing without blurring, so it is not as well supported in
computer graphics as traditional triangle meshes are. It has
been considered difficult to generate meshes on top of MLS
processed point clouds. Regarding MLS, Berger et al. [7]
note that “it is nontrivial to explicitly construct a contin-
uous representation, for instance an implicit function or a
triangle mesh”. Scheidegger et al. [46] and Schreiner et al.
[47] propose advancing front methods to generate triangles
on the basis of MLS point clouds. These methods can
achieve good results, but they come with high computa-
tional costs and are hard to parallelize. Pliiss et al. [44]
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directly generate triangle meshes on top of refined points.
However, the result generates multiple disjointed meshes
and does not deal with mesh stability.

1.1.4 Triangulation methods

Point clouds can be meshed directly using Delaunay tri-
angulation and its variations [9]. These approaches are
subject to noise and uneven distances between points.
Amenta and Bern [5] and Amenta et al. [6] propose robust
variants with the drawback of being slow to compute.
Maimone and Fuchs [37] create triangle meshes for
multiple cameras separately by connecting neighboring
range image pixels to form triangles. The meshes are not
merged, but first rendered. Then, the images are merged.
Alexiadis et al. [4] take the idea further and merge triangle
meshes before rendering. While those methods can achieve
high frame rates, the output quality could be improved.

1.2 Proposed system

Direct triangle mesh generation [24, 25, 32, 43] from point
clouds has been popular in 3D reconstruction systems
[4, 37]. Its strengths are its exceedingly fast operation and
simplicity. However, it can be problematic to use when the
input point cloud is not smooth or when there is more than
one range image to merge. This paper tackles both prob-
lems by providing point cloud smoothing and direct mesh
generation processes that can work together on a GPU.

Algorithm 1 High-level algorithm of the system

1: for every RGB-D camera i do

2 Piaw = GETPOINTSFROMCAMERA (i) > Sec. 2
3 nl,, = NORMALESTIMATION(p/ ) > Sec. 3
4: end for

5: pMLS, BMLS = SURFACERECONSTRUCTION(Praw, Praw) > Sec. 4
6: for every RGB-D camera i do

7: MI’ = INITIALMESHGENERATION(PMLS ) > Sec. 5.1
8 M}, = MesnERros1oN(M/) > Sec. 5.2
9: M{, = MESHMERGING(M}) > Sec. 5.3
10: end for
11: Mg = FINALMESHGENERATION(M)p) > Sec. 5.4

12: RENDERING(MF)

MLS methods constitute an efficient way to smooth
point clouds. Their memory requirements are dependent on
the number of input points and not on a reconstruction
volume. Additionally, the process is fully parallelizable,
making it an excellent target for GPU acceleration [23, 33].

The issue here is that direct meshing methods expect
point clouds to have a regular grid-like structure when
points are projected to camera. Unfortunately, the tradi-
tional MLS smoothing process loses that structure.

Therefore, we need to change part of the MLS method to
make the output conform to meshing requirements.

Direct meshing of the input range images results in
separate meshes for each range image. To reduce rendering
costs and obtain a watertight surface, the meshes should be
merged. Mesh zippering [38, 48] is a well-known method
of doing that. However, this method is not particularly
GPU-friendly. As such, we develop our own approach
inspired by mesh zippering.

Figure 1 outlines the major parts of our system. Point
normals are calculated separately for each RGB-D device
range image (Sect. 3). We use an MLS-based method to
jointly reduce the noise of all input point clouds and to
reconcile data from different RGB-D cameras (Sect. 4). It
also provides temporal stability. Next, meshing the point
clouds is performed by multiple steps: (Sect. 5) generating
a triangular mesh for each camera separately (Sect. 5.1),
removing duplicate mesh areas (Sect.5.2), merging
meshes (Sect. 5.3) and finally outputting a single refined
mesh (Sect. 5.4). The result is sent to rendering or to fur-
ther processing as per the targeted application. This whole
procedure is also summarized in Algorithm 1.

In summary, our contributions in this work are
changing the MLS projection process to make it suit-
able for meshing and providing a new method of
merging multiple triangle meshes. The whole system is
designed with parallelization in mind and runs on com-
modity GPUs.

{ points
|
|
Normal estimation

k points and normals

Proposed method

YYY

Surface reconstruction

refined points

Y

Mesh generation

triangles

Rendering

Fig. 1 System overview and data flow. The dashed gray box marks
the proposed method
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2 System setup

Using our system makes sense in cases where there are at
least two RGB-D devices (see Fig. 2). All cameras gen-
erate a noisy and incomplete depth map of their
surroundings.

Our 3D reconstruction method expects camera intrinsic
and extrinsic calibration parameters to be known at all
times. The cameras are allowed to move in scene as long as
their position is known in a global coordinate system. In
cases where calibration is inaccurate, an iterative closest
point method [8] was deemed sufficient to align point
clouds to the required precision.

We consider the scene to be fully dynamic, i.e. all
objects can move freely. As output, we require a single
triangle mesh that is temporally stable.

3 Normal estimation

Our pipeline starts with initial surface normals estima-
tion at every input point location, much like previous
work does [41, 43]. This is a prerequisite for the MLS
process. Normals are calculated separately for each
depth map. In a nutshell, we look at a gradient of points
in a local neighborhood to get a normal estimate. More
precisely, we calculate gradients for every range image
coordinate (x,y).

g(x,y) =plx+1,y) —px—1,y) (1)

and

Fig. 2 Example of a system setup with two RGB-D cameras. The
shaded pyramids with red edges show the camera’s field of view and
range
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&(x,y) =pl,y+1)—plx,y—1), (2)

where p(x,y) is the range image pixel’s 3D point location
in a global coordinate system, g, is the horizontal gradient,
and g, is the vertical gradient.

In practice, some gradient calculations may include
points with invalid data from an RGB-D sensor (i.e. a hole
in the depth map). In that case, the gradients g, and g, are
marked as invalid. Another issue is that the points used in
gradient calculation might be part of different surfaces. We
detect such situations by checking whether the distance
between points is more than a constant value d. In these
cases, both the g, and g, gradients are marked as invalid for
the particular coordinate.

Next, the unnormalized normal in global coordinates is
calculated as a cross-product,

u(,y) = gelio) x D gy(ind). (3)

where the sums are taken over a local neighborhood of
points around (x,y). Any gradients marked invalid should
be excluded from the sums. Finally, we normalize u(x,y)
so that

u(x, y)
") = ey @
which is the surface normal result.

The neighborhood area in the sum of Eq. 3 is typically
very small, e.g., 3 x 3. This area is insufficient for com-
puting high-quality normals. However, in a later surface
reconstruction phase of our pipeline, we use weighted
averaging of the normals. This is done over a much larger
support area, e.g., 9 x 9, which results in good normals.

Figure 3 shows a comparison of principal component
analysis (PCA)-based normal estimation [26] and our
selected gradient method. A similar estimation radius was

Raw input

MLS output

PCA method

Gradient method

Fig. 3 Comparison of normal calculation methods on real data. Red
and blue lines denote normals of points from different RGB-D
cameras. Note that the gradient method gives similar results compared
to PCA, but with much faster computation
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selected for both methods. While there are differences in
the initial normals, the final result after MLS smoothing is
practically identical. It thus makes sense to use the faster
gradient-based normal estimation.

4 Moving least squares surface reconstruction

MLS methods are designed to smooth point clouds to
reduce noise that may have been introduced by RGB-D
sensors. They require a point cloud with normals as input
and produce a new point cloud with refined points and
normals.

We choose to follow a group of MLS methods that
approximates surfaces around a point x in space as an
implicit function f: R® — R representing the algebraic
distance from a 3D point to the surface. This method is an
iterative process consisting of two main components: an
estimation of the implicit function f (and its gradient if
necessary) and an optimization method to project points to
the implicit surface defined by f. We first use a well-
established method to estimate an implicit surface from the
point cloud and then project the same points to this surface
with our own projection approach.

4.1 Surface estimation

Following Alexa et al. [3], we compute the average point
location a and normal n at point x as

Soow(|le — xil|)xi

RN ST ((F) o
and
n(x) _ ZiW(Hx _xi”)ni (6)

SZiw(lbe —xll)

where w(r) is a spatial weighting function and n; are the
normals calculated in Sect. 3. As in Guennebaud and Gross
[22], we use a fast Gaussian function approximation for the
weight function, defined as

=) 7
win=(1-()") -

where £ is a constant smoothing factor. Finally, the implicit
surface function is obtained as

fx) = n(@)"(x - alx)). (3)

The sums in Eqs. 5-6 are taken over all points in
vicinity of x. Due to the cutoff range of the weighting
function w(r), considering points in the radius of 4 around
x is sufficient. Traditionally, points x; and normals n; are
stored in spatial data structures such as k-d tree or octree.

While fast, the spatial lookups still constitute the biggest
impact on MLS performance. Kuster et al. [33] propose
storing points and normals data as two-dimensional arrays
similar to range images. In that case, a lookup operation
would consist of projecting search points to every camera
and retrieving an s X s block of points around projected
coordinates, where s is known as window size. This allows
for very fast lookups and is cache friendly.

To achieve temporal stability, we follow Kuster et al.
[33] who propose extending x to a 4-dimensional vector
that contains not only spatial coordinates but also a time
value. Every frame received from a camera has a times-
tamp that is assigned to the fourth coordinate of all points
in the frame. Hence, it is now possible to measure the
spatial and temporal distance of any two points. This
allows us to use multiple consecutive depth frames in a
single MLS calculation. The weighting function w(r)
guarantees that points from newer frames have more
impact on reconstruction, while older frames have less. In
our system, the number of frames used is a fixed parameter
Jfoum and is selected experimentally. Also note that the time
value should be scaled to achieve desired temporal
smoothing.

4.2 Projecting to surface

Alexa and Adamson [1] present multiple ways of project-
ing points to the implicit surface. One core concept of this
work is that the implicit function f(x) can be understood as
a distance from an approximate surface tangent frame
defined by point a(x) and normal n(x). This means that we
can project a point x to this tangent frame along the normal
vector n using

x =x—fn. 9)

We call this the simple projection. Since the tangent frame
is only approximate, the procedure needs to be repeated.
On each iteration, the surface tangent frame estimation
becomes more accurate as a consequence of the spatial
weighting function w(r). Another option is to propagate
points along the f(x) gradient. This is called orthogonal
projection.
Instead of following normal vectors or an f(x) gradient
to the surface, we constrain the iterative optimization to a
line between the initial point location and the camera’s
viewpoint. Given a point x to be projected to a surface and
camera viewpoint v, the projection will follow vector d
defined as
v—x
S (19)
Our novel viewpoint projection operator projects a point
to the tangent frame in direction d instead of n as in Eq. 9.
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With the use of some trigonometry, the projection operator
becomes
/e (1)

!
X =x-——.
nTd

Algorithm 2 Point to surface projection
lod=@-x)/llv-x|

2:i=0

3: repeat

4: a=a(x)

5: n =n(x)

6: f=nT(x-a)

7: if f > 0 then

8: f=min (h £/ (n-d))
9: else

10: f=max (-h. f/ (n-d))
11: end if

12: x=x-fd

13: i=i+1

14: until f < €ori > ipyax

This operator works similarly to simple projection when
d is close to n in value. However, this optimization cannot
easily converge when n and d are close to a right angle.
Conceptually, the closest surface is in a direction where we
do not allow the point to move. Dividing by n’d may
propel the point extremely far, well beyond the local area
captured by the implicit function f. We thus limit each
projection step to distance h (also used in the spatial
weighting function 7). This results in a search through
space to find the closest acceptable surface.

If a point does not converge to a surface after a fixed
number of iterations im.,x, we consider the projection to
have failed and the point is discarded. This is a desired
behavior and indicates that a particular point is not
required. The pseudocode for the projection method is
listed in Algorithm 2.

Figure 4 shows the visualization of different projection
methods. Figure 5 shows them in action (except for
orthogonal projection, which is computationally more
expensive). Our method results in a more regular grid of
points on a surface than the normals-based simple

t e @Af(x)
| — (n
camera ]
viewpoint 1 ce (©d

Fig. 4 Visualization of different surface projection methods. a
Orthogonal projection, b simple projection, ¢ viewpoint projection
(ours)
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Time 0

Time 10

Viewpoint projection

Simple projection

Fig. 5 Comparison of simple projection (left) and our viewpoint
projection (right) for the same depth map patch. The latter shows
excellent temporal stability

projection. This process is crucial in making the final mesh
temporally stable. Moreover, the stability of the distances
between points is a key condition to compute the mesh
connectivity in the next section.

5 Mesh generation

The purpose of mesh generation is to take refined points
produced by MLS and turn them into a single consistent
mesh of triangles. The approach is to first generate initial
triangle meshes for every RGB-D camera separately and
then join those meshes to get a final result.

Our proposed method is inspired by a mesh zippering
method pioneered by Turk and Levoy [48]. This method
was further developed by Marras et al. [38] to enhance
output quality and remove some edge-case meshing errors.
Both zippering methods accept initial triangle meshes as
input and produce a single consistent mesh as output.
Conceptually, they work in three phases:

1. Erosion remove triangles from meshes so that over-
lapped mesh areas are minimized.

2. Clipping in areas where two meshes meet and slightly
overlap, clip triangles of one mesh against triangles of
another mesh so that overlapping is completely
eliminated.

3. Cleaning retriangulate areas where different meshes
connect to increase mesh quality.

Prior zippering work did not consider the parallelization of
these processes. As such, we need to modify the approach
to be suitable for GPU execution.

The mesh erosion process of zippering utilizes a global
list of triangles. The main operation in this phase is
deleting triangles. If parallelized, the triangle list would
need to be locked during deletions to avoid data corruption.
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For this reason, we need to introduce a new data structure
where triangles are not deleted, only updated to reflect a
new state. This allows for completely lockless processing
on GPUs. A similar issue arises with mesh clipping, as it
would require locking access to multiple triangles to carry
out clipping. To counter this, we replace mesh clipping
with a process we call mesh merging. It updates only one
triangle at a time and thus does not requiring locking. The
last step of our mesh generation process is to turn our
custom data structures back into a traditional triangle list
for rendering or other processing. We call this final mesh
generation. This step also assumes the use of mesh cleaning
as seen in previous works. Our mesh generation consists of
following steps:

1. Initial mesh generation creates a separate triangle
mesh for every RGB-D camera depth map.

2. Erosion detects areas where two or more meshes
overlap (but do not delete triangles like in zippering).

3. Merging locates points where meshes are joined.

4. Final mesh generation extracts a single merged mesh.

The next sections discuss each of these points in detail.
5.1 Initial mesh generation

The first step of our meshing process is to generate a tri-
angle mesh for each depth map separately. In practice, we
join neighboring pixels in the depth map to form the tri-
angle mesh. The idea was proposed in Hilton et al. [24] and
has widespread uses. We follow Holz and Behnke [25] to
generate triangles adaptively.

Triangles can be formed inside a cell which is made out
of four neighboring depth map points (henceforth called
vertices). A cell at depth map coordinates (x,y) consists of
vertices voo at (x,y), vio at (x+ 1,y), vor at (x,y + 1) and
vip at (x+ 1,y + 1). Edges are formed between vertices as
follows: e, between vy and vy, e, between vig and vy, ¢
between vy, and vy, e; between vy and vy, e, between vyg
and vy, and e, between vy and vi;. An edge is valid only if
both its vertices are valid and their distance is below a
constant value d. The maximum edge length restriction acts
as a simple mesh segmentation method, e.g., to ensure that
two objects at different depths are not connected by a
mesh.

Connected loops made out of edges form triangle faces.
A cell can have six different triangle formulations as
illustrated in Fig. 6. For example, the type 1 form is made
out of edges e,, e,, ¢;. However, ambiguity can arise when
all possible cell edges are valid. In this situation, we select
either type 3 or type 6 depending on whether edge e, or e,
is shorter. Since the triangles for a single cell can be stored
in just one byte, this representation is highly compact.

° ° ° ° °
o ° ° ° °
1 2 3
° ° ° ° °
° . ° ° °
4 5 6

Fig. 6 Forming triangles adaptively between vertices. Each number
indicates the triangle formation type. Type O, which represents an
empty cell, is not shown

5.2 Erosion

The initially generated meshes often cover the same
surface area twice or more due to the overlap of RGB-D
camera views. Mesh erosion detects redundant triangles
in those areas; more specifically, erosion labels all initial
meshes to visible and shadow mesh parts. This labeling
is based on the principle that overlapping areas should
only contain one mesh that is marked visible. The
remaining meshes are categorized as shadow meshes. In
the previous mesh zippering methods, redundant trian-
gles were simply deleted or clipped. In our method, we
keep those triangles in shadow meshes for later use in
the mesh merging step.

To segment a mesh into visible and shaded parts, we
start from the basic building block of a mesh: a vertex. All
vertices are categorized as visible or as a shadow by pro-
jecting them onto other meshes. Next, if an initial mesh
edge consists of at least one shadow vertex, the edge is
considered a shadow edge. Finally, if a triangle face has a
shadow edge, it is a shadow triangle.

Note that if we were to project each vertex onto every
other mesh, we would end up only with shadow meshes
and no visible meshes at overlap areas. Therefore, one
mesh should remain visible. For this purpose, we project
vertices only to meshes with lower indices. For example, a
vertex in mesh i will only be projected to mesh j if i > j.

Algorithm 3 Erosion process

1: for every vertex v in meshes i € {1,2,...,n} do > parallelized
2 Initially label v as visible vertex

3 for every mesh j € {1,2,...,i — 1} do

4: p = PROJECTVERTEXTOMESHSURFACE(, j)

5: if IsPOINTINSIDETRIANGLE(p, j) then

6: Label v as shadow vertex

7 end if

8 end for

9: end for
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Algorithm 3 sums up the erosion algorithm. The Pro-
jectVertexToMeshSurface (v, j) function projects a vertex v
to mesh j surface. This is possible because initial meshes
are stored as 2D arrays in camera image coordinates. As
such, the function simply projects the vertex to a corre-
sponding camera image plane. IsPointInsideTriangle(p, )
checks whether coordinate p falls inside any triangle of
mesh j. Figure 7 shows an example of labeling a mesh into
visible and shaded parts. There are visible gaps between
the two meshes, but this issue will be rectified in the next
meshing stages.

5.3 Mesh merging

The task of mesh merging is to find transitions from one
mesh to another. For simplicity, consider that meshes A and
B were to merge. If mesh A has a shadow mesh that extends
over mesh B, we have transition from A to B. Such a sit-
uation can be seen on the left side of Fig. 8, where A would
be the red mesh and B the blue mesh. In terms of notation,
visible vertices are marked with V and shadow vertices are
marked with S, e.g., v‘g denotes the A mesh’s shadow
vertex.

We begin merging by going through all shadow vertices
vi. If we find a vertex that is joined by an edge to a visible
vertex V¢, then this edge covers a transition area between
two meshes. Such edges are depicted as dashed lines on the
left side of Fig. 8.

Having located the correct shadow vertices vg‘, our next
task is to merge them with the v vertices so that the two
meshes are connected. The end result of this is illustrated
on the right side of Fig. 8. A more primitive approach of
locating the nearest v& to v§ would not work well, since the

closest vertices V&

are not necessarily on the mesh
boundary. Instead, we trace an edge from v} to v§ until we
hit the first B mesh triangle. The closest triangle vertex, v5

to v}, will be selected as a match. Since meshes are stored

AL\ A | AL |/ VOM WM W W 4

LA N /
N AN A/

L 2800 20 4
P 5 S 5. S

Initial meshes Eroded meshes

Fig. 7 Illustration of mesh erosion. Initially, two meshes (one red and

one blue) overlap. After erosion, the red mesh in the overlap area
becomes a shadow mesh, denoted by dashed lines
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Merged mesh

Fig. 8 Illustration of mesh merging. Shadow mesh points are
projected to other mesh (left) and then traced to the closest triangles
for merging (right)

as two-dimensional arrays, we can use a simple drawing
algorithm, such as a digital differential analyzer, to trace
from v{ to v§.

After the mesh merging procedure, we found edges
connecting the two meshes. However, triangles have yet to
be generated. This is addressed in the next and final mesh
generation section.

5.4 Final mesh generation

The last part of our meshing method collects all data from
previous stages and outputs a single properly connected
mesh. Handling triangles made out of visible vertices is
simple, since they can simply be copied to output. How-
ever, transitions from one mesh to another require an extra
processing step.

For simplicity’s sake, we will once again examine two
meshes, A and B, using notation introduced in Sect. 5.3. All
the triangles in transition areas consist of one or two sha-
dow vertices vg‘, with the rest being visible vertices v‘{‘,
Triangles with just one shadow vertex can be copied to the
final mesh without modifications. Triangles with two sha-
dow vertices, however, are a special case. The problem lies
in connecting the two consecutive v§ vertices with an edge.
This situation is illustrated on the left side of Fig. 9.
Specifically, the red mesh A’s top shadow edge does not
coincide with mesh B’s edges. Therefore, we create a
polygon that traces through B’s mesh vertices v&. To reit-
erate, the vertices of the polygon will be starting point 14,
the first shadow vertex v’} mesh B’s vertices vlé, the second
shadow vertex v§ and the starting point v4y. This polygon is
broken up into triangles, as illustrated on the right side of
Fig. 9. Note that the polygon is not necessarily convex, but
in practice, nonconvex polygons tend to be rare and may be
ignored for performance gains if the application permits
small meshing errors.
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Merged mesh Final mesh

Fig. 9 Illustration of final mesh generation

This concludes the stages of mesh generation. The
results can be used in rendering or for any other
application.

6 Implementation and results

Our system has been implemented on a platform with
GPUs running OpenGL 4.5. All experiments were carried
out on a consumer PC with an Intel Core i7-5930 K 3.5
GHz processor, 64 GB of RAM and an Nvidia GeForce
GTX 780 graphics card. We used OpenGL compute sha-
ders for executing code. As all of our point cloud and mesh
data are organized as two-dimensional arrays, we utilized
OpenGL textures for storage.

Table 1 gives an overview of the time spent on different
system processes. The measurements were taken with
OpenGL query timers to get precise GPU time info. The
experiment used two RGB-D cameras, both producing 640
x 480 resolution depth maps, resulting in up to 614k points
per frame. We ran the test with parameters given in
Table 2.

An overwhelming majority of processing time is spent on
surface reconstruction. This is due to fetching a large
number of points and normals from GPU memory. Never-
theless, as the data are retrieved in s X s square blocks from
textures, the GPU cache is well utilized. We also

Table 1 System performance

Process Avg. time (ms) Max. time (ms)
Normal estimation 4 6
Surface reconstruction 157 159
Mesh generation 2 2
Initial mesh 0.33 0.34
Erosion 0.41 0.42
Merging 0.18 0.19
Final mesh 0.77 0.79
Total 163 167

implemented surface reconstruction on the CPU for com-
parison reasons. The execution has been parallelized across
6 processor cores using OpenMP. The average runtime was
1.6 s per frame on the test dataset. This means that using a
GPU gives us roughly 10x the performance benefit over a
CPU.

Our mesh generation method boasts better performance
than competing mesh zippering-based methods [38, 48].
We generate two initial meshes in Sect. 5.1 for the test
dataset and compare the process in Sects. 5.2-5.4 with two
previous methods. The Turk and Levoy [48] implementa-
tion takes 48 s, while the Marras et al. [38] implementation
takes over 9 minutes of execution time. These methods
were originally designed for off-line use on static scenes
and thus focused on mesh quality rather than execution
speed. These implementations are single-threaded CPU
processes and cannot be easily parallelized due to algo-
rithmic constraints outlined in Sect. 5.

Another major reason for the timing differences in
zippering [38, 48] is the speed of point lookups. Previous
methods are more general and can accept arbitrary meshes
as input; they use tree structures such as k-d tree for
indexing mesh vertices. Our method arranges meshes
similarly to RGB-D camera depth maps. This allows for
spatial point lookups by projecting a point to the camera
image plane. This is much faster than traversing a tree.

Figure 10 shows a comparison of meshes using different
MLS projection methods. The simple viewpoint projection
method produces very noisy meshes, and no grid-like
regularity is observed. Our viewpoint projection method,
however, can organize points to a grid-like structure,
making the result much higher quality.

Figure 11 shows comparisons with previous mesh zip-
pering research. Due to differences in the erosion process,
the merger areas of meshes may end up in radically dif-
ferent places depending on method used. Therefore, we
applied our erosion method to force mesh mergers to
appear in the same places for comparison. Turk and Levoy
[48] produce meshes with similar quality to ours. Marras
et al. [38] reference implementation tends to produce a
high number of triangles in merger areas regardless of
configuration parameters. An issue with this method is that
its intended use is to fill holes in a mesh using another

Table 2 System parameters and recommended values

Parameter Explanation

h=3cm MLS spatial smoothing factor

s=9 MLS window size

Imax = 3 MLS maximum number of iterations
foum = 4 MLS number of camera frames used
d=3cm Maximum allowed triangle edge length

@ Springer
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Fig. 10 A mesh merging example. Our viewpoint projection method (lower row) can produce much higher-quality meshes than simple
projection (upper row). The columns from left to right show the merging process stages for two meshes (red and blue)
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Fig. 11 A comparison of mesh zippering methods at various
randomly chosen locations in a real scene. Turk and Levoy [48]
show comparable meshing quality to our method, but is CPU-based

mesh. Our scene is open which does not satisfy this
requirement.

Figure 12 shows our method compared to two popular
3D reconstruction methods: volumetric TSDF-based
reconstruction [28] and Poisson reconstruction [29]. TSDF
method was not designed for dynamic scenes; for this
reason, we reconstruct the scene separately on each frame.
This results in a mesh that is not completely stable in time.
The Poisson method, however, can fill in missing areas of
the scene. This might be a good feature if the holes in the
model are small, but would cause problems in our case.

@ Springer

method and has limited speed. Marras et al. [38] implementation
produces excessive amounts of triangles in merger regions

Large filled-in areas would be inaccurate and tend to
flicker.

While there are plenty of RGB-D camera datasets
available [18], almost none of them use multiple sensors
simultaneously in a dynamic scene. Thus, we used both a
dataset created by Kuster et al. [33] and our own recorded
data. Figure 12 shows them in use. Scene A, courtesy of
Kuster et al. [33], uses Asus Xtion cameras based on
structured light technology. Scene B, created by us, uses
Microsoft Kinect 2 cameras based on time-of-flight tech-
nology. While the type of noise and distortion differs
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Raw input

MLS (ours)

Scene A

Scene B

MLS (ours)

Volumetric

Frame O

Fig. 12 A comparison with popular 3D reconstruction methods using
marching cubes triangularization: a truncated surface distance func-
tion (TSDF)-based volumetric reconstruction [28] and Poisson
reconstruction [30]. a Our method produces higher-quality meshes
with better stability than marching cubes based triangularization.

between devices, the results show that our system is gen-
eral enough to achieve high-quality meshes in both cases.

7 Conclusion

In this paper, we proposed a real-time 3D reconstruction
method that can turn data from RGB-D cameras into
consistent triangle meshes. The system has two core ele-
ments: an MLS-based method to smooth depth camera data
and a mesh zippering-inspired mesh generation and
merging method for GPUs.

Based on the results, our viewpoint projection method
for MLS greatly assists in generating high-quality meshes.

Volumetric Poisson

(b) Preservation of details

MLS (ours)

Poisson

Closeup A

Closeup B

b Poisson reconstruction tends to oversmooth when using fast
processing settings (reconstruction depth <8) and incorrectly gener-
ate surfaces in occluded areas. Scene A is courtesy of Kuster et al.
[33], whereas scene B is ours

We also show that our proposed multiple mesh merging
system can generate consistent meshes and is much faster
than state-of-the-art methods. The implemented system is
completely GPU-based and designed to scale linearly with
input data, making it a promising solution for future large-
scale real-time 3D reconstruction methods.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://crea
tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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