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Line-Based SLAM Using Non-Overlapping Cameras in an Urban

Environment

Atsushi KAWASAKI', Kosuke HARA ', Nonmembers, and Hideo SAITO™, Fellow

SUMMARY  We propose a method of line-based Simultaneous Local-
ization and Mapping (SLAM) using non-overlapping multiple cameras for
vehicles running in an urban environment. It uses corresponding line seg-
ments between images taken by different frames and different cameras. The
contribution is a novel line segment matching algorithm by warping pro-
cessing based on urban structures. This idea significantly improves the
accuracy of line segment matching when viewing direction are very differ-
ent, so that a number of correspondences between front-view and rear-view
cameras can be found and the accuracy of SLAM can be improved. Ad-
ditionally, to enhance the accuracy of SLAM we apply a geometrical con-
straint of urban area for initial estimation of 3D mapping of line segments
and optimization by bundle adjustment. We can further improve the accu-
racy of SLAM by combining points and lines. The position error is stable
within 1.5m for the entire image dataset evaluated in this paper. The esti-
mation accuracy of our method is as high as that of ground truth captured
by RTK-GPS. Our high accuracy SLAM algorithm can be apply for gener-
ating a road map represented by line segments. According to an evaluation
of our generating map, true positive rate around the vehicle exceeding 70%
is achieved.

key words: SLAM, manhattan world, bundle adjustment

1. Introduction

Advanced driver assistance system (ADAS) operate on the
basis of the vehicle position, velocity, and traffic situa-
tion on the road. According to the technology report of
a car manufacturer [1], the expected accuracy of the local-
ization of vehicles for such systems is from a few dozen
centimeters to a few meters. Achieving more accurate lo-
calization has therefore been an actively researched prob-
lem. High-end integrated accurate positioning system (e.g.
POSLYV [2]) achieves accuracy of up to several dozen cen-
timeters by using an RTK-GPS receiver. However, this sys-
tem is not suitable for automotive systems because its cost is
extremely high and its accuracy depends on the reception of
microwaves and radio waves from satellites. Alternately, vi-
sual SLAM is drawing the attention of a lot of researchers.
State-of-the-art visual SLAM can achieve the same accu-
racy as a laser range scanner when the scene has stable fea-
ture points. However, if few feature points are detected from
the scene that mainly consist of texture-less surfaces, visual
SLAM usually suffers a large position and angle error. Some
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Fig.1 Example of a multi-camera system on a vehicle and example of
line segment matchings of different camera images. The line segments of
the same color denote the correspondences.

systems use line features or a hybrid of points and lines for
SLAM.

By using multiple cameras, the accuracy of visual
SLAM can generally be improved. Recent vehicles often
have cameras that capture the front and rear views for safety.
We aim to improve the accuracy of SLAM by finding cor-
responding line segments between different camera images
as shown in Fig. 1. These correspondences are referred to
as “inter-camera correspondences”. In contrast, correspond-
ing line segments between different frames captured by the
same camera are referred to as “intra-camera correspon-
dences”. Inter-camera correspondences can be collected by
moving the vehicle forward, so that the rear camera can cap-
ture the area that was previously captured by the front cam-
era. Since such correspondences have a wide baseline be-
tween the cameras, more accurate localization and mapping
is expected. In our previous work [3], we proposed a method
for improving the accuracy of motion estimation by find-
ing the inter-camera corresponding points. It used a novel
feature-point-matching algorithm that warps feature patches
on the basis of Manhattan World assumption [4].

In this paper, we propose a line-based SLAM, in which
our warping algorithm is applied to line segments matching.
Furthermore, the geometrical constraint of an urban area is
incorporated into the initial estimation of 3D line segments
and the optimization by bundle adjustment. The accuracy
of the estimation is further improved by combining the pro-
posed line-based SLAM with point-based SLAM [3].

The proposed line-based SLAM is applied to generate
a digital map. Digital maps are generally used for purposes

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers
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such as navigation, self driving, and ADAS. Among the var-
ious kinds of digital maps, road maps represented by line
segments and spline curves with information such as white
lines, road markings, and curbs have recently been drawing
attention. The recently developed mobile mapping system
(MMS) [5] makes it possible to generate these maps. As ex-
amples of works using maps, Schreiber et al. [6] proposed a
method of vehicle localization based on cross-checking de-
tected line segments against the map. These digital maps
have to be accurate and up to date, because traffic informa-
tion is frequently updated. The conventional method of gen-
erating accurate maps needs a survey vehicle equipped with
RTK-GPS, multiple cameras, and laser scanners. However,
it is not realistic to use a survey vehicle every time the road
information is updated. To reduce time and effort of using
a survey vehicle, we aim to generate line-based road map
generation, automatically.

2. Related Works

To improve the accuracy of SLAM, multi-camera based
SLAM has recently been developed. For example, Kazik et
al. [7] presented a multi-camera system that performs abso-
lute scale motion. However they noted that degenerate cases
occur if both cameras move in straight lines. In [8], [9],
cameras motion, including scale, can be recovered in the
degenerate straight motion case. Lee et al.[8] combined
the known yaw angle to one inter-camera correspondence
to retrieve the scale. Pless[10] determined the relation-
ship between the accuracy and different camera designs. He
showed that the best design for a two camera system is to
place cameras facing in opposite directions with their opti-
cal axes aligned. Our camera design is same as them.
Line-based SLAM is also drawing attention. Elqursh
et al. [11] presented a method for estimating a relative cam-
era pose between two images from lines. Their method re-
quires only three lines, with two of which are parallel and
orthogonal to the third. Smith et al.[12] demonstrated a
real-time line-based SLAM that extended the point-based
Extended Kalman Filter (EKF) SLAM system to line cor-
respondences. They detected lines by checking if Sobel-
detected edges exist between two corners or not. Hirose et
al. [13] proposed a novel descriptor of line segment features
for line-based SLAM. Many other researches on SLAM
combine lines and other features. Koletschka et al. [14] pro-
posed a method of motion estimation using points and lines
by stereo line matching. Lu et al. [15] incorporated a com-
bination of points, lines, planes, and vanishing points into
bundle adjustment. Zhou et al. [16] proposed a novel visual
SLAM (using EKF) based on Manhattan World assumption
using points and lines. Manhattan World assumption, pro-
posed Coughlan et al. [4] in 1999, states that most planar
surfaces in urban scenes lie in one of three mutually orthog-
onal orientations. Applying this assumption, Furukawa et
al. [17] modified 3D model generated by multi-view stereo.
Inspired by the previous works, we aim to improve
the accuracy of SLAM for a vehicle driving in an urban
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Fig.2  Examples of inter-camera and intra-camera correspondence.

area. To find corresponding line segments captured by non-
overlapping cameras, we propose a novel matching algo-
rithm based on Manhattan World assumption. Addition-
ally, a geometrical constraint of an urban city area is applied
for initial estimation of 3D mapping of line segments and
optimization by bundle adjustment. The proposed SLAM
method also generates a road map consisting of line seg-
ments that can be utilized by ADAS.

3. System Overview

A line-based SLAM pipeline is overviewed as follows. The
proposed line-based SLAM system takes a wheel odometry
and two consecutive frames from the front and rear cam-
eras as an input. Odometry refers to the use of data from
wheel sensors to estimate a relative position over time. For
each frame ¢, the system detects line segments from camera
images using Line Segment Detector (LSD) algorithm [18].
It then warps the patches around a line segment to match
them in the following three cases. The first case is match-
ing between the front image features at frame ¢ and ¢ — 1;
the second case is between the rear image features at frame
t and ¢t — 1; and the third case is between the rear image
at frame ¢ and the front image at frame ¢ — 5. By finding
the best match for various s values, we need to find corre-
spondences between a rear image and multiple front images.
Example of matchings are shown in Fig.2. Each line seg-
ment is tracked over different frames as long as correspond-
ing line segments can be found in later frames. After 3D
mapping of line segments are initially estimated by using
those correspondences, bundle adjustment is applied to the
3D lines with the initial translation information measured by
the odometry.

4. Notation
4.1 Projection Model of Cameras

In this section, notation for representing projection model
of the cameras in the proposed method is presented as in-
dicated in Eq. (1)-(7). This is used for computing the re-
projection error in the bundle adjustment in the proposed
method. To create a multi-camera system, it is necessary
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to define four coordinate systems W, Cy’, C,' and V' which
correspond to world, front camera, rear camera and vehi-
cle coordinate systems at frame #, respectively. The rotation
and position of a vehicle at frame ¢ is expressed with R,y/,
T,'. The relative transformations from the vehicle coordi-
nate system to the front or the rear camera coordinate system
are expressed with Ry, T¢,v, Re,y, Tc,v. These transfor-
mations are determined by the relative pose and position of
the front and rear cameras which are calibrated in advance.
A point p on world coordinate system W is mapped to the
camera frame coordinates and then to the normalized image
plane as follows:

(bt] U] )T = ﬂ(Rclv (vatp + vat) + TC]V) (l)
(I/tz UZ)T = ﬂ(Rczv (va[p + vat) + Tczv) (2)
qx
_(9x/4:
R .

The 3D line L is given as 6-vector (p',r")T. The 3-
vectors p and r are a point on the 3D line and the direction
of the 3D line, respectively. Point u and direction a in the
normalized image plane are computed as follows:

qx

Qi = {Qy = Rckv(varp + vat) + Tckv (4)
q:
Ay

Ar= [Ay] = Rckvvalr &)
A,

u = m(qx) (6)

qux - QxAz) (7)

a =7m(q +Ap) -7 ~
k (Qk ) (Qk) (qul/ _ quZ

where k denotes camera 1 or camera 2. If k = 1, the 3D line
L is observed by the front camera. The 2D line I, is given
as 4-vector (u;T, a;")T.

4.2  Wheel Odometry

In this section, we present notation of geometry related to
the wheel odometry used as the intial value of the bundel
adjustment and computing the warp function for finding cor-
respondences between the cameras.

We define the wheel odometry x as:

xl+1
Xt+1 — [Zt+l — Xt + Axt +sxt (8)
0t+1

As for the proposed SLAM algorithm, 6-DOF (Degree of
Freedom) motion is estimated. However, the odomery is
3-DOF due to characteristics of our application. Ax’ is pre-
dicted relative movement from a previous time. x° is the
initial position of the vehicle. When x° coincides with the
origin of the world coordinate system, x’ is another way of
expressing Ry, and Tyy,'. And &’ is the noise of Ax’, which
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is assumed to be zero-mean Gaussian white noise with co-
variance Xy.

&' ~ N(0,Zy) ©)
o2 0 0

Y, = ( 0 o2 0 ]At (10)
0 0 0'92

where o, 0,, and oy are error variances. Assuming that
&' simply increases in proportion to time, the covariance
increases in proportion to the time intervals between image
acquisitions, At.

AX' is estimated by wheel speed in the prediction step
of EKF. It can be computed by using the same formula as the
geometric model of the two-wheeled robot [19]. We define
the velocity of the center of the rear wheels and the angular
velocity as v, and wy, respectively. These are computed as
follows:

(" +v®) (R - UtL)
v = Jw =
! 2 ! 2d,

(1)

where d,, is the installation interval between the rear wheels.
Assuming that the vehicle is circularly moved in a radius p
and the vehicle direction is changed to w, for At, a radius p
is v;/w;. AX' is described as follows.

o(—cos(8; + w,At) + cos 6;)

Ax =| p(sin(f; + w;At) — sin 6;)
WAt
v, At sinc( “"ZAt) sin(8, + '“’ZA’)
= v, At sinc(“"TA’) cos(6, + w‘zm) (12)
w;At

5. Proposed Line Matching Method
5.1 Inter-Camera Correspondences

First, we focus on the method of getting the correspondences
between the front and the rear images.

As shown in Fig. 3-(a), we define a patch as a rectan-
gle having a pre-defined width (20 pixels in this paper, ex-
perimently decided) in the normal direction centered on the
detected red line segment. For finding the corresponding
line segment in the front image by template matching with
the patch of the rear image, we need to make the perspec-
tive appearance of the patch of the rear image similar to the
front image by warping the patch as shown in Fig. 3-(b). The
warping function can be derived by 3D surface structure of
the patch region, but it is actually not easy to be obtained
just from just from the images.

Here, we assume that the 3D surface of the patch
region is either a part of the road or wall of buildings,
which can be considered as perpendicular or paralell to the
travel direction(z-axis) of the camera according to Manhat-
tan World Assumption. Based on this assumption, we can
derive the 3D coordinate for all pixels in the patch region as
follows.

By using the center point u,, ; of the line segment in the
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(c) Front patch

Fig.3 (a) is a rear image, where the blue rectangle denotes the original
patch of the red detected line, (b) is the warped patch transformed from (a),
and (c) is a front image. Warped patch (b) is similar to the surroundings of
the red line in (c).

rear normalized image, all pixels of the patch in the normal-
ized image plane are expressed as Wy = (U2 + @, U2 + AT,
where a and g the displacement from the center point.

In the case of matching between front and rear, we need
to consider two cases of the 3D surface of the patch: one is
on the road, and the other is on the front wall of buildings as
illustrated in Fig. 2-(a) and (b).

When 3D surface of the patch region is on the road
surface, which is flat and parallel to the travel direction(z-
axis), all y-coordinate value of the 3D point in the patch
in C,' should have the camera installation height 4. Since
y-coordinate value in the image for the patch is (v,,2 + ),
all coordinate values of the 3D points p,’ in the patch are
derived by multiplying with /(v 2 + ) as follows:

h(um,Z + a)/(vm,Z +ﬂ)
h (13)

h/(vm,Z + ﬁ)

where ), indicates a 2D position of the rear normalized co-
ordinates.

In another case that the 3D surface of the patch region
is on the front wall of the buildings, all x-coordinate values
of the 3D points in the patch in C,’ take value d,, distance
to the building on the x-axis in C»' in Fig.2-(b). Since x-
coordinate value in the image for the patch is (u,,» + @),
all coordinate values of the 3D point py¢’ in the patch are
derived by multiplying with d/(um» + @) as follows:

P = /(U2 +B) (“12) -

t dy
pbft = dx/(um,Z + a) (1112) = [dx(vm,Z +ﬂ)/(um,2 + Ck’)]
dx/(um,z + @)
(14)
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where ) indicates a 2D position of the rear normalized co-
ordinates.

By mapping the 3D positions in the patch for both cases
in Cy' to the front-image coordinate in C;"~*, we can de-
rive the following geometric transformations for warping
the rear-image patch as shown in Fig. 3-(b).

W7 = (R (R (Ruey Br'+ Ty )+ T )+ T, ) (15)

U = AR (R (R o+ Ty T ) Te)  (16)

where p; and pyy are 3D positions of the patch for both cases
in C,'. These equations map the position of the rear normal-
ized image coordinate u,’ at frame 7 to the front normalized
image coordinate u;"~* at frame ¢ — s. The patch can be
warped by applying these transformations to all pixels con-
tained in the patch.

Subsequently, the warped patch and the feature patch in
the front image are matched. Even if the patch is accurately
warped, the projected line does not exactly match the line
segment owing to the error of the odometry. Therefore, an
error ellipse based on EKF proposed by Davison et al. [20] is
considered. The error ellipse can be drawn using covariance
X as follows:

ow owT
Xp= (sXy) 9
X

0x a7

In our previous method [3], we superposed the warped patch
on feature points within the error ellipse and compared
them. However, in the case of line segment matching, it
is difficult to superpose the warped patch on detected line
segments because the positions of the endpoints of line seg-
ments detected by LSD are always ambiguous. Therefore,
a zero-mean normalized cross-correlation (ZNCC) score is
computed by raster scan of the warped patch within the er-
ror ellipse. On the position that the ZNCC score is the
highest, we compute the angle between the warped line seg-
ment and the detected line segments in the front image and
the distances from the endpoints of detected line segments
to the warped line segment. The line segment which have
smaller length and angle than the threshold and the smallest
is adopted as the correspondence.

As described above, we presented a way of computing
the matching score, but two undecided elements still exist.
One is that we do not know which line segment exists on
buildings or roads in the detection stage. The other is that
the correct value of d, is unknown when the line segment ex-
ists on the front wall of buildings. To solve these undecided
elements, it is necessary to explore all possibilities per de-
tected line segment in the rear image. After trying Eqgs. (8)
and (9) and changing d, at regular intervals (0.5m) from Om
to 20m, the line segment that gets the highest ZNCC score
is taken as the correspondence.

5.2 Intra-Camera Correspondences

Our method can be applied for matching line segments be-
tween consecutive frame pairs (frame ¢ and 7 — 1) of front
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Fig.4  Examples of matching by our method (a, c, e, g, i, k) and LEHF [13] (b, d, f, h, j, 1). These
images are matched pairs of front images and rear images. Green lines and red lines shows correct and
wrong matching, respectively. Pairs of (a, b), (c, d), ..., (k, 1) are same images and show comparison of

our method and LEHF.

(b)

Fig.5 Examples of matching by our method (a, ¢, ) and LEHF [13] (b, d, f). (a-d) are matched pairs
of front images. (e, f) are matched pairs of rear images. Pairs of (a, b), (c, d), and (e, f) are same images

and show comparison of our method and LEHF.

images or pairs of rear images. In these matching, we can
consider three cases of the 3D surface of the patch. Two
cases are the same as inter-camera correspondences. The
last is in the case that the 3D surface of the patch is on the
side wall of buildings as illustrated in Fig. 2-(c) and (d). In
this case, the 3D surface around the line segment is flat and
vertical to the travel direction (z-axis) in accordance with
Manhattan World assumption. Since all z-coordinates of the
3D points in the patch have the same value d, which is the
distance from the vehicle to the side wall of the building on
the z-axis, all coordinate values of the 3D point in the patch
are derived by multiplying by d, as follows:

o d (U, + @)
Pos = dz( 12) = dz(vm,l +ﬁ) (18)

Z

By mapping the 3D positions in the patch in C;' to the front-
image coordinate in C;"~*, we can derive the following geo-
metric transformations for warping.

u == T(Re;v(Row'™ (Rue, ‘Pos+Twe, )+ T )+Te,v) (19)

It maps the position of the front (rear) normalized image

coordinate u,’ at frame ¢ to the front (rear) normalized image
coordinate u;""! at frame 7 — 1.

The method of computing the matching score is the
same as the method when finding the inter-camera corre-
spondences. In this matching, we do not know d, and need
to change d, at regular interval (0.5m) from Om to 20m.

5.3 The Matching Result

The results of matching between front and rear images are
shown in Fig. 4. Figure 4-(a, c, e, g, i, k) are obtained by our
method, meanwhile Fig. 4-(b, d, f, h, j, 1) are by LEHF [13].
It is clear that our method can not detect many correspond-
ing line segments, but it achieves higher matching accuracy
than that of LEHF. The results of matching of pairs of front
images and pairs of rear images are shown in Fig. 5. Intra-
camera correspondences by our method (Fig. 5-(a, c, e)) are
as accurate as those given by LEHF (Fig. 4-(b, d, f)). The
advantage of our method is that it can classify all matched
line segments into “on the building walls” or “on the road”.
This information is helpful for the next step. The line clas-
sification is failed when Manhattan world assumption is not
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established, for example, the vehicle makes a turn. In that
case, however, we can get the inter-camera correspondences
on the road and the intra-camera correspondences because
intra-camera correspondences do not have large differences
of viewing direction.

6. Initialization and Optimization
6.1 Initial Estimation of 3D Line

As for line-based SLAM, 3D lines must be computed from
correspondences. Although various method for computing
3D lines are available, the most popular one is based on line
of intersection of planes which pass the camera center and
the line segment. However, this method is not suitable for
vehicle SLAM, because a 3D line cannot accurately be com-
puted especially when the angle between planes passing the
line segments parallel to the travel direction is small. As
shown in Fig. 6-(a), most 3D line segments are pointing in
imprecise directions.

Under the assumption that 3D lines exist on three dom-
inant planes, accurate 3D lines are computed. As explained
at the end of Sect.5, under Manhattan World assumption,
the matched line segments are classified as existing on the
front wall of buildings, the side wall of buildings, or the road
surface. In the first two cases, we got the distances d, or d,
between the building walls and the vehicle in the process of
line segment matching. According to the 3D geometrical in-
formation of the matched line segments, 3D line segments
can be computed by projecting all matched line segments
onto the plane of the front wall of buildings (x = d,), the
plane of the side wall of buildings (z = d,), or the road
surface (y = h), respectively. By selecting 3D line seg-
ments with smaller re-projection errors, it is possible to col-
lect 3D line segments as initial estimation of 3D mapping.
The re-projection error is computed from the perpendicular
distance from a re-projection of 3D line to the endpoints of

x[m]
S

4 zm 8 2 0 & zml 8 12

(a) Standard initial estimation (b) Our initial estimation

4 z[m 8 i2 0 4 zm 8 12
(d) With the assumption

(c) Without the assumption

Fig.6  Examples of road maps: (a) is the initial estimation by line inter-
section, (b) is one by our method, and (c) and (d) are the results after bundle
adjustment without and with the assumption.
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a detected line segment in the image plane. This method
computing the re-projection error of line segments is widely
used and defined in [21]. The 3D line segments determined
by our initial estimation method are shown in Fig. 6-(b).

6.2 Optimization by Bundle Adjustment

In this step, we focus on optimization of 3D lines and car
positions. The optimization is performed every time when
the newest frame is obtained. The set of corresponding line
segments € is defined as:

Q :{wi = (t’ k» .])l

. (20)
te{l,....,Tykefl,2},jel{l,...,J}}

where the ith line segment denotes that a 3D line L/ is ob-
served by camera k at frame 7. 2D line 1; denotes the re-
projection of L/ in camera k image. We use bundle adjust-
ment to optimize both the pose (Ryy’, Tyy') and 3D lines
through re-projection error minimization. The endpoints of
observed line segment are expressed with g, and g,’. The
cost function is define as:

2 2
E=) D (e =) ) di@.1) @1
i n=1 i n=1

where d,(-,-) denotes the perpendicular distance from a
point to a line in images. We find R, Ty, and L/ which
minimize E. The initial values of Ry, Tyy' correspond
with the odometry. Bundle adjustment is conducted by us-
ing the iterative non-linear Levenberg-Marquardt optimiza-
tion algorithm with numerical differentiation based on [22].

To improve the accuracy of the optimization, a con-
straint is incorporated into the cost function. Under the as-
sumption that road surface is flat, the constraint such that
3D lines labeled as “on the road” only moves on plane y = h
is incorporated into bundle adjustment. A similar constraint
for 3D lines labeled as “on the building” is not incorporated
because the positions of the planes of the building walls,
represented by d, and d,, are just roughly estimated by the
patch matching with regular interval (0.5m) as explained in
Sec.5.

The above-mentioned bundle adjustment under the pla-
nar constraint of the road is described in detail as follows.
Two types of Jacobian matrices for poses and 3D lines
should be used in solving nonlinear least square problem
by Levenberg-Marquardt method. Among them, we focus
on the Jacobian matrix for 3D lines.

The Jacobian for 3D lines needs partial differentials
with respect to point p and direction r. According to chain
rule, the Jacobian matrices can be derived as:

de,!  de, 0q
op/ aq' op’ (22)
e, Oe,' A
o - A or 23)
aq _(oq" dq'  Oq 24)

ap‘j B apxj apyj (9ij
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ori  \ord or,/ or,/
where q and A are expressed as Eqs. (4) and (5). To fix y-

coordinate of the 3D lines labeled “on the road”, the second
column in (24) and (25) is computed as follows:

0 (on the road)
oq’ 0
1 t o (26)
op,’ R Ryw'| 1] (on the building)
0
0 (on the road)
D! 0
D _ , . @7)
or,’ R \Ryw'|1| (on the building)
0

The difference between the results with or without the plane
assumption is shown in Fig. 6-(c) and (d).

In the case of combining points and line segment, the
cost function of points is added to Eq. (21). The cost func-
tion of the points also evaluates the re-projection error. The
cost balance between points and lines are equal. However,
the number of the correspondences are different. In the ex-
periments shown in this paper, the number of inter-camera
corresponding lines are 4288 (dataset 1) and 3018 (dataset
2), while the number of inter-camera corresponding points
are 6945 (dataset 1) and 4062 (dataset 2), respectively. In
the same way, the number of correspondences of points are
generally larger, therefore the points affect the optimization
than the lines.

7. Experiments

The vehicle used for experiments was equipped with vari-
ous visual and motion sensors, including a high-precision
RTK-GPS device (Novatel OEM615) that provides accurate
motion information (to be used as a ground truth) with po-
sitioning error of less than 2 cm. We installed two cameras
(Lumenera Lm225) on the top of the vehicle. An original
image size is 2048 x 1088, but we resize it to 1024 x 544
image to the reduce computational complexity. The vehicle
run at about 40 km/h, and the cameras captured the scene at
a rate of 10 fps. Three travel datasets were collected while
the vehicle was driven in an urban environment (Saiwai dis-
trict, Kawasaki-City, Japan). One has 209 frames and is
the scene where the vehicle goes straight, another has 202
frames and is the scene where the vehicle turns left at the
intersection, and the other has 700 frames and is the scene
where the vehicle travels about 1 km.

7.1 Evaluation of Localization

We evaluate the localization accuracy on the three datasets.
Six methods were used for comparison: our method using
points and lines, our method using lines only, point-based
SLAM (previous method [3]), LSD-SLAM [23], the wheel
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odometry, and RTK-GPS as ground truth. LSD-SLAM is a
state-of-the-art SLAM algorithm. This comparison is actu-
ally not fair because LSD-SLAM takes an image sequence
with a monocular camera while our method uses two cam-
eras, but we show this comparison with LSD-SLAM as a
reference of a performance of a state-of-the-art SLAM algo-
rithm with a monocular camera. In LSD-SLAM, the metric
scale is given by the wheel odometry because this algorithm
can not determine the scale.

The trajectories estimated by the six methods are
shown in Fig. 7. This result indicates that our methods us-
ing both points and lines are the closest to ground truth. Our
method using only lines reduces the error compared to that
of the odometry. On the other hand, point-based SLAM has
a large error at a certain point in zoom area (2) in Fig. 7-
(b). To provide a quantitative analysis, the positional and
angular errors between ground truth and the results given
by each method were computed as shown in Fig. 8-(a, b, e,
f, i, j). The poses of these methods for the first frame are
aligned. In dataset 1 and 2, the position error of our method
using points and lines is always stable within a small value
(0.5 m). In dataset 3, our methods using both points and
lines are the closest to ground truth with less positioning
error than 1.5 meters. Although the error of the odometry
are generally accumulated, the errors of our methods are
hardly accumulated because the optimization is performed
every time when the newest frame is obtained, so that the
error of the odometry in one frame can almost be corrected.
The angular errors of point-based SLAM increase at around
frame 100 in Fig. 8-(b), from frame 100 in Fig. 8-(f), and at
around frame 240 in Fig. 8-(j). The zoom area (2) in Fig. 7-
(b) shows the trajectories around frame 100. The cause of
the errors is an insufficient number of corresponding points.
Only about 100 points around these frames can be obtained
because the scenes are open and do not contain many build-
ing, whereas other scenes have 200 points on average. Line
features can be stably detected from white lines, road mark-
ings, and curbs. This characteristic of line feature makes
the two our methods more accurate than other methods. By
additionally using points and lines, the accuracy of SLAM
can be improved, as shown by the curve scene in Fig. 8-(f),
frames 50-100 and Fig. 8-(j), frames 330-400.

To evaluate the improvement of our line-based SLAM
algorithm, four cases were compared as shown in Fig. 8-
(c, d, g, h, k, 1): our line-based SLAM using inter- and
intra-camera correspondences, our line-based SLAM us-
ing only intra-camera correspondences, standard line-based
SLAM using inter- and intra-camera correspondences, and
the odometry. Standard line-based SLAM estimates initial
3D lines by using line intersection of planes and does not
impose the planar constraints of 3D lines on bundle adjust-
ment. The angular errors of standard line-based SLAM is
very unstable because the initial estimation of mapping of
3D line is incorrect. Comparison of standard SLAM and
our methods (red plots) reveals that our initialization and
optimization methods are more effective than standard line-
based SLAM in the urban scene. The fact that our method
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Trajectory results obtained from three datasets. Comparison of result estimated by proposed

method (lines plus points and only lines) with result estimated by conventional method (only points),

other state-of-the-art algorithm (LSD-SLAM [23]), odometry and RTK-GPS (ground truth). The trajec-
tories from our method (points and lines) are closest to ground truth.

(intra + inter) products slightly lower positional and angu-
lar errors than our method (intra only) confirms the effect of
inter-camera correspondences on improving the accuracy.
Figure 9 is the plots of the number of detected inter-
camera corresponding lines and the ratio of false matches

for each frame in dataset 1 and 2. The x-axis is rear frame
numbers. The total number of inter-camera correspondences
in dataset 1 and 2 are 4,288 and 3,018, and the number of
inliers are 4,190 and 2,898, respectively. Inter-camera cor-
respondences are much less than the total 55,401 and 37,809
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intra-camera correspondence found. However, it is consid-
ered that inter-camera correspondences play a roll of con-
necting intra-camera correspondences of front images with
ones of rear images.

7.2 Evaluation of Generated Map

Our method was used to generate a line-based road map.
The endpoints of line segments on the road map can be esti-
mated by finding intersections or nearest points between the
optimized 3D line labeled “on the road” and a 3D line pass-
ing through the camera center and an endpoint of a detected
line segment in the image plane. Figure 10 shows the gener-
ated line-based road map for a street with 100 meters range
extracted from the dataset 1 and 2. In lower image in each
dataset, the maps consisting of black line segments were
made by professionals using a survey vehicle. To quanti-
tatively evaluation of our generated maps, an inlier of line
segments in our map is defined as one that have a perpen-
dicular distance from both endpoints of the line segment to
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S
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Frame

(b) Dataset 2

150 200

The number of inter-camera correspondences and the rate of false matches in dataset 1 and 2.

the professional map within 100 mm. In Fig. 10 green lines
and red lines show inliers and outliers, respectively.

On the basis of this definition, we evaluated corre-
sponding length and non-corresponding length in terms of
true positive rate (TPR) and precision. TPR shows the rate
of the length of the professional map that is matched with
our generating map. In other words, if TPR is high, it can be
said that many line segments of the professional map can be
automatically reproduced. The precision shows the rate of
the length of inliers in our generating map. If the precision
is high, it can be said that few false line segments exist in our
map. Table 1 shows TPR for each marking type. The sec-
ond and third columns indicate TPR for the whole of dataset
1 (DS1) and dataset 2 (DS2). Each precision is 54.1% and
61.2%. These results indicate that TPR for curbs is low in
DS 1, and many outliers are separated from the vehicle. One
of the reasons for this separation is that the road surface is
actually not plane but slightly semi-cylindrical. The shad-
ows are also the reason that precision decreases. Most red
line segments which are vertical to the travel direction in
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Fig.10  Upper images are our generated maps in (a) and (b). Lower im-

ages are comparison of our maps with ground truth. Green, red, and black
lines show inliers, outliers, and ground truth, respectively.

Table1  True positive rates for each marking type.
Full[%] Around car[%]
Marking types DS1 | DS2 | DS1 DS2
Lane lines 713 | 69.8 | 83.6 81.7
Road markings | 63.0 | 68.0 | 63.0 80.8
Curbs 38.0 | 68.5 | 54.6 80.0
Total 61.5 | 68.0 | 72.8 78.0

Fig. 10-(a) indicate shadows.

The range around the vehicle was limited, and TPR and
the precision were recomputed. The width of the range was
set to 5 m because the width of a standard road is from 2.75
m to 3.5 m. The fourth and fifth columns of Table 1 indicate
TPR. Each precision is 60.7% and 66.3%. Compared to the
total TPR for the full map, that for the limited map increased
by more than 10%.

For the reasons stated above, it is difficult to reproduce
the complete road map using the travel dataset which was
obtained in one driving. Collecting data during multiple
driving of normal cars will make it possible to generate ac-
curate maps. Future works concerning generating maps is
to integrate multiple generated maps by image processing
on the 2D map.

7.3 Computational Cost

We evaluate the computational cost. The computational cost
of our SLAM system is expensive because it is necessary to
explore all possibilities, a line segment is on a road or on a
building. Experimental results shows that the matching of
inter-camera correspondences takes to about 20.5 second,
the matching of intra-camera correspondences takes to 38.5
second, and the optimization takes to 15.4 second. The total
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processing time par one frame is more than 1 minutes. This
implies that our SLAM is not suitable to online application,
but still useful for some applications without real-time re-
quirement, such as generating road map.

8. Conclusion

We

proposed a novel line-based SLAM using non-

overlapping cameras. The proposed line segment match-
ing algorithm can find the correspondences between differ-
ent camera images even when camera viewpoints are very
different from one to the other. Under the constraint that de-
tected line segments are on buildings or on roads, the accu-
racy of estimating initial mapping of 3D line was improved.
We also proposed a method for taking into account the con-
straint in bundle adjustment for accuracy improvement of
SLAM. The results of localization experiments confirmed
the effectiveness of inter-camera correspondences and the
constraint in regard to accuracy of SLAM. Additionally, we
can further improve the accuracy by using both points and
line segments. Road maps were also generated the road map
by our method. According to an evaluation of our generating
map, TPR around the vehicle exceeding 70% is achieved.
However, since it is difficult to reproduce the complete road
map in one driving, it is necessary to integrate multiple maps
to generate accurate maps.
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