
VOL. E101-D NO. 5
MAY 2018

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



1296
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.5 MAY 2018

PAPER Special Section on Machine Vision and its Applications

Superimposing Thermal-Infrared Data on 3D Structure
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SUMMARY In this paper, we propose a method to generate a three-
dimensional (3D) thermal map and RGB + thermal (RGB-T) images of
a scene from thermal-infrared and RGB images. The scene images are
acquired by moving both a RGB camera and an thermal-infrared camera
mounted on a stereo rig. Before capturing the scene with those cameras,
we estimate their respective intrinsic parameters and their relative pose.
Then, we reconstruct the 3D structures of the scene by using Direct Sparse
Odometry (DSO) using the RGB images. In order to superimpose thermal
information onto each point generated from DSO, we propose a method for
estimating the scale of the point cloud corresponding to the extrinsic param-
eters between both cameras by matching depth images recovered from the
RGB camera and the thermal-infrared camera based on mutual informa-
tion. We also generate RGB-T images using the 3D structure of the scene
and Delaunay triangulation. We do not rely on depth cameras and, there-
fore, our technique is not limited to scenes within the measurement range of
the depth cameras. To demonstrate this technique, we generate 3D thermal
maps and RGB-T images for both indoor and outdoor scenes.
key words: thermal-infrared camera, visual odometry, 3D thermal map,
Delaunay division, calibration

1. Introduction

Thermal-infrared cameras measure infrared rays emitted
from any objects and can use this ray information to esti-
mate the object temperature. This temperature, which can
not be retrieved from RGB cameras, is a valuable informa-
tion that leads to many applications in industrial domains as
well as in academic research. Indeed, thermal-infrared cam-
eras can be used to detect gas leaks, fires, abnormalities in
electronic apparatus, and so on. Most of these issues are
hardly detectable with visible light, thus thermal-infrared
cameras constitute a precious tool in these cases. However,
thermal-infrared camera also presents some drawbacks. In
practice, the material used to produce the lenses of thermal-
infrared cameras usually makes their field of view usually
narrow compared to the lenses of standard RGB cameras.
Moreover, textures perceptible in visible spectral domain
(i.e. captured by RGB cameras) are likely lost in invisible
light. Since the human eye deals with visible light, it is often
difficult for humans to understand thermal-infrared images
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Fig. 1 Example of a generated thermal map and RGB-T image. The cor-
respondence between RGB and thermal-infrared images is obtained using
the 3D structure generated from DSO. The top row shows a reference view
and a 3D reconstructed result, the middle row shows a 3D thermal model
generated by the proposed method, and the bottom shows an RGB-T image
and reference frames of an RGB and a thermal-infrared cameras.

due to this texture alteration.
These issues would be easily solved if it was possible to

perfectly superpose a thermal-infrared image with its corre-
sponding RGB image. This is feasible only if both RGB and
thermal-infrared cameras share the same projection center
(i.e., the same position). Some very specific cameras, such
as the one used in [1], can simultaneously capture RGB and
thermal-infrared images. However, in standard situations,
RGB and thermal-infrared images are captured using differ-
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Fig. 2 Overview of the proposed method.

ent cameras. This paper addresses the problem to effectively
associate thermal data to its corresponding RGB counterpart
for visualization purposes.

2. Related Works

In this paper, we consider the situation where the acquisi-
tion device is composed of at least an RGB and a thermal-
infrared camera. In a standard situation, the two (or more)
cameras can not share the same position. Thus, the matching
of these data requires some geometric computation.

A feasible way to proceed consists of adding a 3D sen-
sor to the thermal-infrared and RGB cameras to handle these
geometric constraints. Borrmann et al. [2] use a laser scan-
ner and an RGB camera. Due to its heavy weight, the laser
scanner is attached to the RGB camera and mounted on a
wheeled robot. The robot moves around the scene and per-
forms laser scans repeatedly to generate a 3D RGB map.
For each scan of the scene, the robot also acquires the cor-
responding 3D thermal map. While this method performs
well, both the laser scanner and the robot are very expen-
sive. Moreover, the need for a wheeled robot prevents the
acquisition process to be conducted in scenes composed of
stairs or other low-quality paths.

A cheaper alternative consists of using an RGB-D sen-
sor to generate the 3D model of the scene. Vidas et al. [3], as
well as Matsumoto et al. [4] mount a Kinect with a thermal-
infrared camera on a hand-held stereo rig. They obtain a
3D structure of the scene using KinectFusion [5]. Although,
this method performs well in indoor situations, low cost
depth sensors, such as Kinect, usually fail in outdoor en-
vironments where the sunlight affects the depth value acqui-
sition [6], [7]. Moreover, the size of the acquired scene is
usually limited to small areas with the use of KinectFusion.

Prakash et al. [8] combines two thermal-infrared cam-
eras and use stereo vision to compute a 3D model of the
scene. In this method, they use epipolar geometry from the
thermal-infrared images to constrain the computation of cor-

respondence. However, the thermal stereo method is rele-
vant only when there are significant temperature gradients
on the object surface. Up to now, finding stereo correspon-
dences between 2 thermal-infrared images is still very chal-
lenging, as stated in [9]. Indeed, since the thermal-infrared
images are low textured, standard matching method often
find very few correspondences.

Finally, Ham et al. [10] compute the geometry of the
scene using the Structure from Motion (SfM) technique [11]
and superimpose the thermal information on the resulting
3D structure. This system uses only an RGB camera and
a thermal-infrared camera, and thus handles both indoor
scenes and outdoor scenes. However, the calculation cost of
the 3D reconstruction from the SfM is significant. Indeed,
SfM combines all the images of the considered sequence in
order to match them. Thus, the generated 3D point cloud
is accurate, however this process leads to a significant com-
putational cost. On the other hand, SLAM uses selective
frames (e.g., keyframes) or the last consecutive frames to
improve its real-time performance during the video capture.
Thus, this approach results in a low computational cost for
a 3D reconstruction not as accurate as for SfM [12].

In this work, we propose a method combining an RGB
camera with a thermal-infrared camera. As discussed in
[10], this setup does not include any depth sensor and thus
also supports outdoor scenes. We use a simultaneous local-
ization and mapping (SLAM) method instead of a SfM ap-
proach, so the calculation cost is lower than in [10]. More-
over, we propose a robust calibration process for thermal-
infrared cameras as well as an accurate camera relative pose
for a more efficient thermal to RGB mapping.

3. Overview of the Proposed Method

In this paper, we present a method to generate RGB-T im-
ages (RGB plus Thermal) by superimposing thermal infor-
mation obtained from the thermal-infrared camera onto the
RGB images.
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More precisely, our system consists of four stages:
first, we attach an RGB camera and a thermal-infrared cam-
era on a stereo rig, then calibrate them using a common cal-
ibration board that can be simultaneously detected by both
cameras, as described in Sect. 4. Second, we acquire a set
of images of the scene with the RGB camera and gener-
ate at runtime a 3D structure of the environment, as ex-
plained in Sect. 5. In the third step, we estimate the projec-
tive scale between the 3D structure and the calibration board
using depth images generated from both RGB and thermal-
infrared camera sequences, as described in Sect. 6. Finally,
the thermal map and the RGB-T images are generated using
the 3D structure computed from the RGB images and the es-
timated scale. An overview of the whole process is depicted
in Fig. 2.

Our main contribution is this paper consists in both the
accurate thermal camera calibration process (Sect. 4) and the
overall process to superimpose Thermal-infrared data on 3D
reconstruction from the RGB images, including the specific
problem of finding the unknown projective scale between
RGB and Thermal-infrared cameras (Sect. 6).

4. Camera Calibration

4.1 Calibration Board Issues

Camera calibration is a well known process for pinhole cam-
eras. This process, that usually requires point correspon-
dences between images, has been wildly studied for RGB
images but appears to be more challenging for thermal-
infrared cameras, due to the lack of textures. Assuming
that the calibration process is performed using a calibration
board, the thermal-infrared camera hardly detects the cali-
bration pattern. Indeed, a thermal-infrared camera measures
the temperature from the infrared rays emitted by objects.
The locally emitted infrared light intensity depends more on
the object temperature than on the color of the object. Even
though it is true that black objects absorb and emit a larger
amount of infrared energy than brighter objects, in practice,
a thermal-infrared camera cannot detect a checker pattern if
the temperature of the calibration board is uniform across
the black and white parts.

A general way to make the board detectable by the
thermal-infrared camera is to heat the calibration board in
order to make the re-emitted light significantly hotter than
the intrinsic object temperature. Matsumoto et al. [4] uses a
hair dryer to heat the calibration board while Ham et al. and
Weinmann et al. [10], [13] prefer to use a set of lamps. Some
other methods proposed by Prakash et al. and Saponaro
et al. [14], [15] use a flood lamp to heat the calibration board.
However, Vidas et al. [16] suggest that the use of a flood
lamp is comparatively inaccurate.

In our method, we designed our calibration board from
a printed chessboard pattern and placed black plastic tape
on the black parts. Then, we used a freezer to cool the cali-
bration board. Heating the board with a lamp is also a good
way to proceed, however using a freezer is more convenient

Fig. 3 Blur on the thermal-infrared camera image. The top row shows
images of a calibration board captured by both a thermal-infrared camera
and an RGB camera. At the bottom row, a zoomed corner on a thermal-
infrared image and an RGB image are compared. It is more difficult to
detect a thermal-infrared image than an RGB image because of the blur.

in our case.
The resulting image obtained after heating or cooling

still presents some very blurred textures, as shown in Fig. 3.
This blur is caused by the fact that the board temperature
quickly tends to diffuse from one cell to the next. Thus, after
the heating or cooling process, the measured temperature
gradually diffuse from a black part to a white one.

This blur is a serious issue for the calibration process,
in term of accuracy but also for any automatic chessboard
detection. In our method, we first estimate the camera lens
distortion parameter using the plumb line method (more de-
tails in Sect. 4.3). Next, we perform an initial estimation of
the checker pattern corners. These estimated points are sig-
nificantly refined using a non-linear process involving con-
strains such as cross-ratio and vanishing point consistency.

4.2 Camera Model

In this paper, we use the pinhole camera model [17] for both
the RGB and thermal-infrared cameras. Let x = (u, v, 1)�
and X = (X,Y,Z, 1)� be the image coordinates and the world
coordinates, respectively. A camera projection matrix is de-
fined as follows:

P = K
[
R t

]
, with K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
fx 0 x0

0 fy y0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
R ∈ S O(3), t ∈ R3. (1)

where K is the camera’s intrinsic matrix, defined by the
camera principal point (x0, y0) and the camera focal length(

fx, fy
)

expressed in pixel units. R is a 3 × 3 rotation ma-
trix defining the camera orientation and t is a transforma-
tion vector representing the camera position. A 3D world
coordinate point X = (X,Y,Z, 1)� projects to a 2D image
point x = (u, v, 1)� by sx = PX, with s ∈ R∗.
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Fig. 4 Estimation of distortion parameter. (Left) A set of points sup-
posed to be aligned in the real scene and their least-square fitted line.
(Right) Corresponding undistorted image.

4.3 Distortion Correction

The camera lens distortion correction is performed only
once per camera unless the lenses are changed or manip-
ulated (zoom or strong refocus). We use the plumb line
method described by Devernay and Faugeras [18] in order
to correct the lens distortion by making straight lines of the
scene also straight in the image. This method requires a
set of points assumed to be aligned in the real world. In
our case, we manually extract these points from buildings
images that contain good straight lines with strong thermal
contrasts with the sky. The method defined in [18] non-
linearly computes the fine radial distortion parameters such
that the selected points become aligned. The resulting im-
ages present a very good correction, as depicted in Fig. 4.
This radial distortion correction procedure is strongly re-
quired for the next steps of the camera calibration process.

4.4 Corner Refinement

This section presents our chessboard corner points refine-
ment. This process highly improve the accuracy of the cam-
era calibration.

4.4.1 Initial Detection

A very common way to detect a calibration chessboard is
to use the automatic tools provided by OpenCV†. This tool
automatically detects the corner of the chessboard and is
wildly used to calibrate RGB cameras. However, in the
thermal-infrared camera case, the inherent blur (shown in
Fig. 3) makes the point detection accuracy drastically fall.
The point detection is clearly inaccurate and messy for ther-
mal images. Since a good accuracy in camera calibration
is required for the thermal to RGB mapping, we propose a
chessboard detection refinement process.

4.4.2 Corner Refinement based on Line Intersection

This process starts from an undistorted image of the cal-
ibration chessboard obtained from Sect. 4.3. Thus, every
corner of the checkerboard pattern should be detected such

†Open Source Computer Vision Library (OpenCV)
http://opencv.org/

that each point lying on the same row (respectively column)
should be aligned. We refine the corner points using line in-
tersection optimization inspired by the method proposed by
De la Escalera and Armingol [19]. In our method, we per-
form a least square fitting of the lines from the “inaccurate”
detected corners instead of using the Hough transform on
the image.

Naturally, these first estimated lines are not accurate
due to the blur on the thermal-infrared images, see Fig. 5
(left). However, they can be considered as a good starting
estimation for the first step of our refinement process. These
lines are transformed to fit the neighboring maximum gradi-
ent of the image intensity, computed only in the orthogonal
direction of the lines. In other words, the lines are trans-
formed to lie on the middle of the blur between the black
and the white cells of the chessboard. Since the maximum
gradient point set may include outliers, the line fitting is per-
formed with RANSAC line fitting. Finally, the corner points
are estimated based on the intersection between each rows
and columns.

4.4.3 Corner Refinement Based on Geometric Constraints

Firstly, let P denote the set of the corners initially detected
on the calibration board and refined in Sect. 4.4.2. The next
step of our refinement consists in a non-linear process. In-
deed, we also optimize the corners’ position according to
both the cross-ratio extracted from each chessboard cell and
the vanishing points of the chessboard rows and columns
respectively.

Cross ratio

Corner points are placed at constant intervals on the chess-
board and thus should satisfy some constraints of cross-
ratio. The cross-ratio is a perspective invariant defined in the
invariance theory of cross-ratio [17], [20]. If the points A, B,
C and D are collinear in space, the four corresponding pro-
jected image points A′, B′, C′ and D′ are also collinear. The
cross-ratio of two sets of any such consecutive four points
from any row (or column) of the chessboard are identical
and satisfies the following equation:

ρ̂ =
AC
CB
/

AD
DB
=

A′C′

C′B′
/

A′D′

D′B′
(2)

In practice, it is possible to measure how the detected points
satisfy this cross-ratio constraint by a cost function Ccross(P)
inspired by a method proposed by Ricolfe-Viala et al. [21].
This cross-ratio cost is equally divided into two costs dedi-
cated respectively to rows and columns constrains:

Ccross(P) = Crows
cross(P) +Ccols

cross(P)

where Crows
cross(P) and Ccols

cross(P) are computed in the same way.
For clarity purpose, we will detail only the computation
of Crows

cross(P). According to the cross-ratio constraint, each
four successive points of a row should lead to the theoret-
ical cross-ratio ρ̂ defined by any consecutive points on the
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Fig. 5 Initial detection and refining the points. Refined corner points should lie along straight lines in
the left image. The center image shows the refinement of the points. Blue points are points detected by
OpenCV and Red Points are the refined points, and the right image shows lines drawn connecting the
corners.

chessboard. Let Qrows be the set of all combination of four
consecutive points q = A, B,C,D of P, extracted only from
the rows of the calibration board. The cross-ratio ρ(qi) of
each qi ∈ Qrows is defined as:

ρ(qi) =
AiCi

CiBi
/

AiDi

DiBi

Then, the cross-ratio cost function dedicated to the rows
points can be defined as:

Crows
cross(P) =

1
card(Qrows)

∑
qi∈Qrows

(
1 − ρ(qi)

ρ̂

)
(3)

The same procedure holds for Qcols with:

Ccols
cross(P) =

1
card(Qcols)

∑
qi∈Qcols

(
1 − ρ(qi)

ρ̂

)
(4)

Vanishing points

As for the cross-ratio cost function, the vanishing point cost
function is divided into two costs since a calibration board
contains two main vanishing points:

Cvanish(P) = Crows
vanish(P) +Ccols

vanish(P)

Again, let’s just consider the chessboard row vanishing
point. The cost function procedure starts by an estimation
of the vanishing point (xv, yv) computed as the least square
intersection of all the line extending each rows. Then, the
vanishing point cost Crows

vanish(P) is defined as the average dis-
tance from this vanishing point to these lines. Since each
of those lines should pass throw the vanishing point, the av-
erage distance from the lines to the vanishing point should
tend to zero if the corner points are accurately positioned.
More formally, let ri = (ai, bi, ci)� be the Hessian form of
the ist row, andV the set of rows of P, then the cost to min-
imize can be expressed as:

Cvanish(P) =
1

card(V)

∑
ri∈V

|aixv + biyv + ci|√
a2

i + b2
i

(5)

Fig. 6 Constraints of cost function. The left figure describes the cross-
ratio constraint, which is satisfied by Eq. (2). The right figure shows van-
ishing point of the calibration board.

The denominator transforms the line equations in their nor-
malized Hessian form. Moreover, note that we don’t use this
formulation when the calibration board is orthogonal to the
principal ray of the camera since in this situation, the van-
ishing points would lie at infinity which is not compatible
with our vanishing point scoring method.

Figure 6 depicts both the cross-ratio and the vanishing
points constraints.

Data fidelity term

Using only the two first terms would lead to a set of points
perfectly aligned and with the perfect distances from one
to the next, but not necessary consistent with the calibra-
tion board since the refined points could freely move any-
where. Thus, to maintain a certain consistency between
the points and the calibration board, we add a data fidelity
term Cdist(P). This cost simply defines the �2 distance
d(xi, x̂i) from any original point x̂i computed in Sect. 4.4.2
to its corresponding refined points xi ∈ P:

Cdist(P) =
1

card(P)

∑
x∈P

d(xi, x̂i) (6)

global cost function

The final cost function to optimize the chessboard corner
position estimation can be described as the weighted sum of
the three first cost functions:

C(P) = arg min
P

(
Cvanish(P) + αCcross(P) + βCdist(P)

)
(7)
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where α, β are given parameters. Once the corners are re-
fined by minimizing the weighted sum of Eq. (7), these re-
fined points are used to calibrate the camera parameters us-
ing Zhang’s method [22].

4.4.4 Deciding the Weights α and β

The weights α and β of Eq. (7) are decided experimentally.
We generate a virtual chessboard consisting in a set of points
regularly arranged and transform them using a random but
realistic perspective transformation (homography). Then,
we added a Gaussian noise on these points. For a large set of
values for α and β, we generate many noised virtual chess-
boards and ran our algorithm. We selected the couple (α, β)
that reconstruct the best the original virtual chessboard in
average over all the virtual noised chessboards.

5. Reconstructing the 3D Structures

Assuming the cameras to be calibrated, the next step con-
sists in the computation of a 3D structure of the scene and in
the camera pose estimation of each frame in the 3D structure
coordinate system. This 3D structure will be the support to
projected thermal data for the final visualization. Note that
we only need the camera pose of the RGB camera since we
already know the relative pose between the RGB camera and
the thermal-infrared camera, from the camera stereo rig cal-
ibration.

Many different techniques exist to compute a 3D recon-
struction. Table 1 shows a comparison between state-of-the-
art methods. Density refers to how dense the 3D structure is,
cost corresponds to the calculation cost, and scale specifies
whether the method can handle large scenes.

Among these methods, techniques using depth sen-
sors based on time of flight or structured light in the in-
frared domain (e.g., Microsoft Kinect sensor) are immedi-
ately discarded since such low-cost depth sensors do not
perform well in outdoor scenes due to interference with sun-
light. Moreover, low-cost depth sensors cannot handle large
scenes due to their intrinsic limited range of action. These
constrains exclude the use of KinectFusion. Better sensors
are expensive and thus do not match our purpose of keeping
the whole process affordable. Moreover, our method should
be easy to set up and to implement, so we also discard Li-
dar 3D scanners. The remaining solutions suggest to use an
RGB camera to perform the 3D reconstruction.

There are two main approaches to generate 3D struc-
tures from RGB images: direct methods, like Engel
et al. [23], referring directly to image intensity, and feature-
based methods, such as Klein et al. [24], that generates and
matches feature points to construct the 3D map. Since our
goal is to generate a large thermal map with real-time per-
formance, possibly on outdoor scenes, the best candidates
are direct sparse odometry (DSO) [25], large-scale direct
monocular simultaneous localization and mapping (LSD-
SLAM) [26] and ORB-SLAM [27]. In these three 3D recon-
struction systems, DSO and ORB-SLAM are more accurate

Table 1 Comparison of 3D reconstruction methods.

method density cost scale
DSO [25] direct sparse small large
LSD-SLAM [26] direct semi-dense small large
PTAM [24] feature sparse small small
ORB-SLAM [27] feature sparse small large
SfM [11] feature sparse large large
KinectFusion [5] RGB-D dense small small
Lidar 3D scanner dense - large

than LSD-SLAM [25], [27]. Moreover, the 3D structures
generated from DSO have a better density than those gener-
ated from ORB-SLAM. Thus, we selected DSO for our 3D
reconstruction.

6. Relative Scale between the Point Clouds

Any 3D models generated by a monocular RGB camera is
build and defined up to an unknown scale. Since we want to
back-project the thermal-infrared images on the 3D model
obtained by DSO, this unknown scale should be estimated.
In practice, this scale is also the scale that relates a depth
map generated from the RGB image to the corresponding
depth map generated from the thermal-infrared images. This
Section defines how to estimate the scale of the DSO point
cloud in the stereo rig coordinate system, and how to back-
project the thermal-infrared images on this point cloud.

DSO divides frames into two types: key frames for
which a depth map is computed, and the other frames just
used to refine the depth map generated by the key frames.
We use these depth maps to superimpose thermal informa-
tion on the 3D structure. For a given key frame, the depth
value of each pixel x refers to a 3D point that can be pro-
jected on the infrared thermal image on x′. This projected
point x′ corresponds to a thermal value that can be associ-
ated to the pixel x in the RGB image.

More precisely, let Irgb express an RGB image and
Iir a thermal-infrared image. The depth maps of DSO are
sparse so some points have depth value and some others do
not. Image coordinates with depth value d are denoted by
x = (x, y, 1)�. A general back-projection function [17] to
converts the RGB image coordinate to a 3D coordinate ac-
cording to the depth d in the DSO depth map is given by:

X(d) =

( (
KR

)−1(dx − Kt)
1

)
(8)

If we consider that Prgb defines the coordinate system of
the stereo rig, then Prgb = Krgb[Id|0] and Pir = Kir[Rir |tir],
where [Rir |tir] is the relative pose between the two cameras,
usually with the arbitrary constraint ‖tir‖2 = 1. Since we are
back projecting from Prgb = Krgb[Id|0], the back-projection
function simplifies to:

P′rgb(x, d) =

(
dK−1

rgbx
1

)
(9)

where Krgb is the intrinsic matrix of RGB camera. Then, the
following equation is used to project the DSO depth map
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Fig. 7 Variation of back-projection by different scale. The red circle rep-
resent a 3D object of the scene, with a certain arbitrary scale. The trans-
lation t between the two cameras is initially subject to ‖tir‖2 = 1 can be
scaled with the fine scale factor s to fit the 3D reconstruction from the first
camera.

onto the thermal-infrared image to read its thermal intensity
value:

x′ = Mrgb irP
′
rgb(x, d) (10)

such that the pixels of the RGB image can be associated to
the corresponding pixel in the thermal-infrared image:

Irgb(x)↔ Iir(x′) (11)

However, since the relative pose of Pir in Prgb coordinate
system is defined up to scale, the transformation matrix
Mrgb ir from Prgb in Pir is also defined up to scale s:

Mrgb ir = Kir

[
Rir stir

]
(12)

Here, tir is a translation vector corresponding to the position
of the thermal infrared camera in the stereo rig coordinate
system. Since tir is defined up to an arbitrary scale (here
‖tir‖2 = 1), it can be also defined up to any other scale fac-
tor s. Moreover, the 3D structure and thus the depth values
provided by any monocular RGB SLAM are also defined
up to scale, thus we cannot project the DSO point cloud to
thermal-infrared camera images unless we can determine a
common scale factor between the 3D structure system coor-
dinate and the stereo rig system coordinate. For this process,
we can fix the 3D structure scale factor to its default value
and search for the fine the stereo rig scale factor s of that fits
the best to the 3D structure, as depicted in Fig. 7.

Figure 8 shows projection result from DSO point
cloud to thermal-infrared images using difference scale s in
Eq. (12), varying the parameter s. In our method, we esti-
mate the scale of the point cloud generated by a monocular
RGB camera and project it to thermal-infrared images accu-
rately.

Thermal values and RGB values have different modal-
ities, and thus cannot be compared directly. We use instead
the RGB and Thermal depth value to compare both images,

Fig. 8 Result of back-projection to thermal-infrared images using differ-
ent scales. The top left is a reference RGB camera image. The other images
are generated by back-projection of the DSO point cloud using different
scales. The bottom left image shows the accurate scale.

since depth is a common modality. In our method, we gener-
ate a depth map from both the RGB and thermal-infrared im-
ages using a multi view stereo (MVS) algorithm [28], [29].
A depth map is generated using several images near focus
frames and the trajectory of the camera obtained from DSO.
We generate a patch for each pixel, then get the score by
comparing the patch and other frame patches using zero-
mean normalized cross correlation (ZNCC).

di = arg min
d∈D

C(i, d) (13)

Equation (14) describes the score of the ZNCC
where C expresses the ZNCC score of the patch centered
in pixel i with a certain depth value d.

C(i, d) = −
∑
j∈Ip

(
Ip(j) − Ip

) (
I′p(j) − I′p

)
σ(Ip) σ(I′p)

(14)

This score is calculated comparing a square window Ip in
depth image I and a square window I′p in depth image I′.
Ip(j) and I′p(j) describe the intensity value on pixel j. Finally,

Ip and σ(Ip) refer to the means and the standard deviation of
the window Ip. Figure 9 shows some results of depth maps
generated from both RGB and thermal-infrared images.

The depth map generated from the RGB image se-
quence is successively translated to thermal-infrared cam-
era coordinates by Eq. (12) by iterating on t. The trans-
lated RGB depth map and the thermal-infrared depth map
are compared using the mutual information defined in [30],
[31]. This mutual information is often used to compare im-
ages of different modalities. In our case, this modality vari-
ety can be expressed as the difference of accuracy between
the RGB and thermal camera depth map computation. In-
deed, thermal-infrared depth maps are always significantly
worse than the depth maps build from RGB images. The
translation t leading to the best depth map overlap defines
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Fig. 9 Generating a depth map using a multi-view stereo (MVS) algo-
rithm. The top left shows a reference RGB camera image and the bottom
left shows a reference thermal-infrared camera image. Right images show
the result of MVS using each image.

Fig. 10 Variation of the MI score with scale. The green curve is the
average score for each scale. We use some samples to estimate the scale
and get the average of the score. The red vertical line is the place where the
score is maximum, and the blue vertical line is the ground truth obtained
by the experiment in Sect. 8.4.

the scale s. Equation (15) describes the mutual information
score.

MI(Irgb, Iir) = η
(
H(Irgb) + H(Iir) − H(Irgb, Iir)

)
(15)

In Eq. (15), Irgb is the patch converted by Eq. (11) using
given scale s, and η describes the ratio of appear the RGB
depth map on the thermal-infrared camera coordinate after
converting. H(I) describes the appearance ratio of depth i
on the depth image I and H(I, I′) describes the two dimen-
sional appearance ratio of depth i on the depth image I and
depth j on the depth image I′.

H(I) = −
∑
i=0

pI(i) log
(
pI(i)

)
(16)

H(I, I′) = −
∑
i=0

∑
j=0

pII′ (i, j) log
(
pII′ (i, j)

)
(17)

Figure 10 shows the variation of the mutual informa-
tion scores with different scales s. The green curve is the

Fig. 11 RGB-T image. The left shows the result of overlaying a 2D mesh
on the image, and the right shows the resulting generated an RGB-T image.

average score for each scale. The optimal scale can be es-
timated uniquely as a global maximum from this the graph.
This scale is a valuable information to correctly superim-
pose the temperature data on the point cloud.

7. Generating RGB-T Images from the Point Cloud

At that stage, we have a point cloud computed by the RGB
camera and the correct scale between this point cloud and
the stereo rig referential. Thus, it is basically possible to
project associate to each point a RGB value as well as a
thermal value. In practice, the point cloud generated from
DSO is sparse, so we sometimes have to interpolate the ther-
mal information where the point cloud is not dense enough.
Thus, the 3D point cloud is first back-projected on the tar-
geted RGB image using the camera pose provided by DSO.
Second, we generate triangle meshes from the projected
point cloud using Delaunay triangle division† [32]. Then
each triangle vertex is back projected on the thermal image
using Eq. (10), in order to compute the right texture coordi-
nates of each triangle in the thermal image. The final ren-
dering consists in the superimposition of the dense thermal
textured mesh back projected onto the corresponding RGB
image. Figure 11 shows an example of an RGB-T image
build with this process.

8. Experiments

8.1 Experimental Setups

In our experiments, we fixed a Flea3 in Point Grey monocu-
lar RGB camera and a PI640 Optris thermal-infrared camera
into a hand-held stereo rig, as depicted in Fig. 12. This de-
vice can be easily manipulated to capture two videos of the
scene.

8.2 Calibration Refinement

The calibration refinement process described in Sect. 4 is
evaluated as follows. We first calibrate the cameras with
the non-optimized chessboard corners detected by OpenCV,
then compute the reprojection error on each camera, i.e. the
average distance from each detected corner in the image and

†Fade2D Delaunay Triangulation
http://www.geom.at/products/fade2d/
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Fig. 13 Thermal maps. Left: outdoor sequence, made out of 1330 pairs of RGB and thermal-infrared
images. Right: indoor sequence with 1264 pairs of RGB and thermal-infrared images.

Fig. 12 Camera rig. Left: thermal-infrared camera. Right: RGB camera.

Table 2 Calibration RMS in pixel.

Initial Refined
Thermal 1.4980 0.6311
Stereo 1.2345 0.7594
RGB 0.1723 -

the projected corned with the projection matrix. Second,
we repeated this process with the refined chessboard cor-
ners. These reprojection errors are shown in Table 2. Even
through the reprojection error of the thermal camera is still
not as accurate as for the RGB camera, we can note a no-
ticeable improvement, roughly by a factor of 2, in the repro-
jection error of the thermal camera calibration.

8.3 Thermal Maps and RGB-T Images

As detailed in Sect. 7, the final RGB-T images are com-
puted by superimposing thermal information on the RGB-
images. The thermal data is rendered with a colormap with
red, green, blue gradation, where red indicates high temper-

ature and blue indicates lower temperature. For our exper-
iments, we generated thermal maps from both an outdoor
sequence and an indoor sequence. Figure 13 shows the re-
sulting generated thermal maps.

In the outdoor sequence, the building equipments and
the asphalt exposed to the sun light get a high temperature,
and thus appear in red. The cars parked in the shadows of
buildings have a lower temperature and are rendered in blue.
In the indoor sequence, we can notice the high temperature
of the displays in red, and low temperature of the beverage
rendered in blue.

We also generated RGB-T images from various scenes.
Figure 14 shows the resulting RGB-T images and reference
RGB images.

8.4 Evaluation the Estimated Scale

In this section, we describe the evaluation of our scale esti-
mation method and its accuracy. Figure 15 shows the envi-
ronment we used to evaluate the scale. In this experiment,
we reconstruct a calibration board of known length. Using
the scale estimated by our method, we compared the esti-
mated size of the calibration board with the actual size.

First, we reconstruct a thermal map as usual, as shown
on the left of Fig. 15, then we reconstruct the calibration
board in the right part of the figure. Second, the point cloud
is reprojected to the image capturing the calibration board
and we pick up the points on the corners of each cell of the
calibration board. The points are very noisy, so we remove
the outliers that are not on the plane of the calibration board
by RANSAC and compute a estimated length L̂ of each cell
side:

L̂ =
‖t‖
s

(18)
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Fig. 14 RGB-T images from various scenes. This images are generated from 3 different sequences.

Fig. 15 Evaluation of the estimated scale. The reconstructed environ-
ment includes a calibration board. First, estimate the scale of the point
cloud. Second, compare the estimated scale and the actual scale by using
the side of the calibration board.

We then estimate the average length of the cells, which
is the length of the DSO point cloud scale. Using Eq. (18),
we converted the scale to the actual size. We calculated the
mean relative error against the actual size L using Eq. (19):

ε =
L̂ − L

L
(19)

Considering the randomness of RANSAC, we repeated
the process 100 times. Table 3 describes the mean and the
standard deviation of the relative error. We evaluated the
indoor and outdoor scenes in two sequences.

Table 3 Mean and standard deviation of the relative error between the
estimated scale and the ground truth.

Average Standard deviation
Scene1 −0.1026 0.0048
Scene2 0.0719 0.0386

9. Conclusion

In this paper, we visualize temperature more effectively by
generating a thermal map and RGB-T images using 3D
structures obtained from DSO. We further demonstrate the
results of our method using indoor and outdoor scenes.

In the proposed method, first, we calibrate an RGB and
a thermal-infrared camera using a calibration board that can
be detected by the thermal-infrared camera. Then, temper-
ature information is superimposed onto the generated 3D
structure using the extrinsic parameter between both cam-
eras. At that time, we have to obtain the scale of the 3D point
cloud. Thus, we estimate the scale using depth maps gener-
ated from MVS. Moreover, we generate RGB-T images that
can superimpose temperature on RGB images where suffi-
cient 3D points are not obtained from DSO using Delaunay
triangulation in order to create triangle mesh.

We can generate thermal maps and RGB-T images by
using the proposed method. We plan to expand our system
to generate automatic alerts for abnormalities in electricity
in plants based on variations in the temperature.
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