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SUMMARY We propose a novel object recognition system that is able
to (i) work in real-time while reconstructing segmented 3D maps and si-
multaneously recognize objects in a scene, (ii) manage various kinds of
objects, including those with smooth surfaces and those with a large num-
ber of categories, utilizing a CNN for feature extraction, and (iii) main-
tain high accuracy no matter how the camera moves by distributing the
viewpoints for each object uniformly and aggregating recognition results
from each distributed viewpoint as the same weight. Through experiments,
the advantages of our system with respect to current state-of-the-art object
recognition approaches are demonstrated on the UW RGB-D Dataset and
Scenes and on our own scenes prepared to verify the effectiveness of the
Viewpoint-Class-based approach.
key words: object recognition, convolutional neural network, SLAM, seg-
mentation

1. Introduction

Object recognition is a vital technology in computer vision
and robotic perception. It can be applied in various fields,
including robotic manipulation, autonomous driving, and
augmented reality.

We propose a novel multi-view-based recognition
method that has the following advantages with respect to
existing methods:

• working in real-time while processing SLAM, segmen-
tation, and object recognition,
• managing smooth-surfaced objects and a large number

of categories, and
• maintaining high accuracy regardless of the motion of

the camera.

Our method employs the state-of-the-art dense map recon-
struction and segmentation techniques proposed by Tateno
et al. [1] to find a candidate object for recognition (i.e., ob-
ject proposal). It segments each input depth image, then
merges the obtained segments into a Global Segment Map
(GSM, see Fig. 3, bottom right) reconstructed using the
SLAM framework. One of the main advantages of this
method is that the computational cost is stable and in real-
time regardless of the size of the GSM and the number of
merged depth maps.

In our method, the techniques are modified to uni-
formly distribute multiple viewpoints for each object (see
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Fig. 3, upper right) while maintaining the computational
complexity of O(n2) (i.e., the size of the input image). We
call each distributed viewpoint a Viewpoint Class (i.e., each
small sphere distributed around each segmented object in
Fig. 4). Only when the object is observed from a new View-
point Class from which the object has not yet been recog-
nized, we crop the region of the object from a current frame
to input the cropped images into a trained Convolutional
Neural Network (CNN) for feature extraction. The aim of
this procedure is to improve the final recognition accuracy
by avoiding repeating the recognition computation when the
camera stops at a poor view direction. As a secondary ef-
fect, the processing time is reduced by limiting the number
of times the region is input to a CNN. Therefore, there is
no trade-off between accuracy and real-time in this method.
Furthermore, by utilizing a CNN as a tool for feature extrac-
tion, high scalability is achieved. In our method, any CNN
structure that takes one input image and outputs its category
can be used, whereby the range of application of this method
is widened to consider various kinds of datasets for a CNN
and trained CNN models are provided recently [2], [3].

There are several applicable methods regarding the is-
sue of avoiding repeating the recognition computation when
the camera stops at a poor view direction. For example, by
recognizing objects only in PTAM-like keyframes, recogni-
tion results from the same view direction would not be accu-
mulated. However, with the PTAM-like keyframes method,
we cannot detect the change of the viewpoint for “each
object”, but can only detect whether the camera itself has
moved or not. For example, between two keyframes, objects
close to the camera are observed from a sufficiently differ-
ent viewing direction, but objects far from the camera are
observed from almost the same viewpoint. Our method is
significant in that it detects changes in view directions that
greatly change recognition results by tracking each object
region in the scene accurately using [1], modifying [1] to
distribute viewpoint classes around each object region, and
recognizing each object from uniformly distributed view-
points.

We demonstrate the achievement of the three above-
mentioned advantages with experiments that also validate
the improved object recognition performance. First, the sys-
tem is compared against the current state-of-the-art [4], [5]
using the UW-RGBD Dataset [5], [6]. The run-time perfor-
mance of our system is analyzed to verify that it works in
real-time. Furthermore, its scalability is verified by increas-
ing the number of categories to 295. Finally, the effective-
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Fig. 1 Flow of the proposed method (upper: SLAM Phase, middle: Segmentation Phase, bottom:
Recognition Phase).

ness of the Viewpoint-Class-based approach is verified un-
der a scenario such that the camera idles in a poor position
where recognition accuracy with a CNN is low due to scenes
in which a part of the recognition target is occluded or has
characteristics such as reflections and object shapes.

2. Related Works

Single-view-based Object Recognition Traditional state-
of-the-art techniques for object recognition are based on
HOG [7] and deformable-part-based models (DPM), as pro-
posed by Felzenszwalb et al. [8] These methods exploit
HOG features from the shape of each object and its parts
across several scales to reduce its dimensions. However,
the scalability is limited because the entire image is scanned
in a sliding-window fashion for each object type that needs
to be identified. While Dean et al. [9] proposed a method
to improve such techniques for handling more object cat-
egories, there is still a trade-off between recognition per-
formance and processing speed. LeCun et al. [10] showed
that object recognition with a CNN is robust against Sup-
port Vector Machines (SVM) and k-Nearest Neighbor (k-
NN) in terms of lighting and pose change since then, object
recognition with a CNN has been actively researched. R-
CNN, proposed by Girshick et al. [11], employs Selective
Search [12] as a means of object proposal instead of sliding-
window-based detection to reduce the computational cost.
Furthermore, a CNN [3], [13]–[15] is employed for feature
extraction. These two techniques are category-independent,
so that high scalability is achieved.

Multi-view-based Object Recognition The above-
mentioned single-view-based recognition methods, how-
ever, have a fundamental problem in that recognition per-
formance depends on the appearance of target objects in the
frame. Intuitively, by aggregating object evidence across
multiple viewpoints, the recognition accuracy can be made
more precise. Lai et al. [4] proposed a multi-view-based
recognition method that aims to detect and label objects in
3D scenes by applying HOG-based detectors to assigning
class probabilities to pixels of each RGB-D frame. These
probabilities are incremented in voxels, and a labeled 3D
map is built. While the performance is improved compared
to single-view-based methods, 4 seconds are required to
process each frame because a HOG-based approach is em-
ployed, which uses a large amount of computational time for
feature extraction and sliding-window classification. Bao
et al. [16], [17] proposed other multi-view-based recogni-
tion methods that jointly estimate camera pose, 3D points,

Fig. 2 Comparison of the proposed method and conventional methods in
multi-view-based object recognition.

and object regions by expanding the Structure-from-Motion
(SfM) framework. Although the recognition performance
and its robustness are improved, its computational cost is so
huge that it cannot carry out real-time applications.

SLAM Framework for Multi-view-based Object
Recognition Other works [5], [18]–[21] expand the SLAM
framework for multi-view-based object recognition. Li
et al. [20] proposed a multi-view-based object recognition
method that works in real-time by extracting keypoints near
3D corners. While it achieves high efficiency with respect to
the computational cost, it cannot manage smooth-surfaced
objects whose keypoints are hard to extract (e.g., spheri-
cal objects). Pillai et al. [21] developed an ORB-SLAM-
based object recognition method. Since it exploits features
with spatial pyramid pooling using FLAIR [22], it can man-
age smooth-surfaced objects. However, not only does it not
work in real-time, but it also has a problem in that class
probabilities are computed across all frames in which the
object is observed, so that the recognition accuracy is de-
creased if the camera remains in a poor position. [23] uti-
lized reconstructed 3D shapes for object recognition by ex-
panding the RGB-D SLAM framework for the sake of man-
aging spherical objects and estimating the 3D poses of each
object in a scene. Although such methods using depth in-
formation for recognition are highly accurate, their range of
application is limited since full 3D models of each recog-
nition target are required for machine learning. Figure 2
summarizes the conventional methods mentioned above and
the proposed method along two axes: real-time processing
and scalability.

Object Detection and Tracking Many methods [24]–
[27] for robust object tracking by collecting learning sam-
ples of tracking targets online and updating the models have
been proposed. However, unlike the method of Tateno et
al. [1], these methods do not reconstruct dense 3D model in
which each object is segmented (i.e., GSM), furthermore,
camera pose against each object is not estimated. These are
critical issues for achieving high accuracy regardless of the
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motion of the camera, which is realized by uniformly dis-
tributing viewpoint classes around each segmented object
and recognizing objects from these viewpoint classes with
our method.

3. Proposed Method

In this section, we describe our proposed method, which si-
multaneously processes reconstruction, segmentation, and
object recognition. Figure 1 shows a flow diagram of the
proposed method. Our method consists of three phases
(SLAM, Segmentation, and Recognition). Firstly, we pro-
vide an overview of the SLAM and Segmentation Phases in
order to reach parameters used in the Recognition Phase.
After that, we describe the Recognition Phase in detail,
which is the main contribution of this work. The inputs are
just RGB and depth images obtained from a moving RGB-D
sensor, which we process individually.

3.1 SLAM Phase

This section provides an overview of the SLAM Phase (see
Fig. 1, upper stage). We employed the SLAM system pro-
posed by Keller et al. [28] because a global model, which is
a model reconstructed through the SLAM framework, con-
sists only of point clouds. Thus, it can manage a wider
environment compared to voxel-based methods, including
Kinect Fusion [29]. Each point sk of a global map S has
information including a 3D position uk ∈ R3, a normal
nk ∈ R3, a confidence ck ∈ R, and a time stamp tk ∈ N.

The Preprocessing Stage is for smoothing a depth
image Dt at current frame t with a bilateral filter [30] and
transforming Dt into a vertex map Vt(u) = K−1u̇Dt(u) us-
ing the camera intrinsic parameter K, a depth map element
u = (x, y)T in the image domain u ∈ R2, and its homoge-
neous coordinate u̇. The normal mapNt is also generated in
this stage by using a cross-product calculation toVt.

The Camera Pose Estimation Stage is for calculating
the current camera pose Tt = [Rt, tt] ∈ SE(3), Rt ∈ SO(3),
and tt ∈ R3 by using Vt, Vm

t−1, and Nm
t−1. At this time, we

denote the rendered map of the global model with respect
to a particular camera pose as m. The point-to-plane ICP
algorithm proposed by Low [31] takes these three maps and
outputs a rotation and translation between the current frame
and the previous frame.

The Global Model Rendering Stage is for obtaining
the correspondences between the point clouds generated by
the current depth map Dt and the global model S. The in-
dex map is generated in this stage by projecting point clouds
from the global map via the projection matrix Pt, which con-
sists of the current camera pose Tt and the intrinsic param-
eters K. Vm

t and Nm
t are also generated at this stage for the

Camera Pose Estimation stage in the next frame.
The Global Model Update Stage is for merging or

adding the point clouds generated from the current depth
map Dt to the global model. Only when specific geometric
conditions are satisfied is the point Dt(u) merged to a point

sk already present on the global map S, and the associated
confidence ck is incremented.

3.2 Segmentation Phase

This section provides an overview of the Segmentation
Phase (see Fig. 1, middle stage) which determines the object
targeted for object recognition. The segmentation frame-
work we employed is based on the method by Tateno et
al. [1]. It takes the current depth map Dt and incrementally
builds up and updates a Global Segmented Map (GSM) L
for each frame. The components of the GSM are the same
as those for the global map S, and each point on the GSM is
labeled. The main advantage of this system, and our reason
for employing it, is that the computational cost for updating
a GSM never increases, as opposed to other segmentation
systems [32].

The Depth Map Segmentation Stage is for segment-
ing the inputed depth map Dt by conducting normal edge
analysis. The process takes its vertex map Vt and normal
map Nt as inputs and a binary edge map Bt is outputted by
comparing the nearby normal angles and vertex distances.
Then, a connected component algorithm is applied to the bi-
nary map to obtain a label map Lt on which each element
Lt(u) is associated to the label l j, l j ⊂ Z≥0.

The Segment Label Propagation Stage is for gener-
ating a propagated label mapLp

t , where each elementLp
t (u)

is associated with a label assigned to each point constitut-
ing a GSM. To achieve this goal, firstly, the rendered label
map Lm

t is computed by projecting the GSM with Pt, which
was created in the Camera Pose Estimation Stage. Next, the
overlap percentage between the label li ∈ Lm

t , li ⊂ Z≥0 and
l j ∈ Lt is computed and used to decide whether li is propa-
gated to Lp

t or l j is to be used directly. Finally, a propagated
label map Lp

t of a current frame t (see Fig. 3, left bottom) is
obtained.

Fig. 3 Actual image of Viewpoint Class uniformly distributed around
each segmented object in the Global Segment Map (GSM). Green pyra-
mids represent the camera trajectory up to the current frame t. The View-
point Class colored in red is the one from which the object has already been
recognized. Left side, top to bottom: input RGB image, normal map Nt ,
propagated label map Lp

t .
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The Segment Merging Stage is for merging segments
that originally consisted of the same object. When the over-
lapped percentage of la, lb ∈ Lm

t , calculated in the Seg-
ment Label Propagation Stage, is sufficiently larger than the
threshold, the segment pair (la, lb) is merged and replaced
with la.

The Segment Update Stage is for updating the GSM
with Lp

t . When reconstructing the GSM in real time, it is
not robust to directly modify the GSM based on the label
indications contained in Lp

t , since such a label map which is
created from one single depth frame usually contains noisy
information. Therefore, [1] introduced a confidence-based
approach by assigning each element of the GSM map to a
confidence. The label of each point in the GSM is updated
only when its label confidence exceeds the threshold, other-
wise, only its label confidence is changed.

3.3 Recognition Phase

In this section, we describe the Recognition Phase, which
is the core of our proposal. As shown in Fig. 4, the main
contribution of this work is uniformly distributing the view-
points around each object in the GSM and impartially merg-
ing the recognition results from each distributed viewpoint
with the same weight. We call each distributed viewpoint
Viewpoint Class. To achieve this goal, in contrast to [1],
each segmented object O j has information about its centroid
C j ∈ R3 for centering the Viewpoint Class on the centroid
C j. These centroids are updated in the Segment Update
Stage. Furthermore, O j possesses recognition results from
each Viewpoint Class.

The Recognition Phase, depicted in red in Fig. 1, is pro-
cessed in every frame as in the SLAM and Segmentation
Phase. However, Viewpoint Class generation is performed
only once before the initial frame as a pre-processing step.
The Viewpoint Class shown in Fig. 4 is distributed over the

Fig. 4 The concept of our Viewpoint-Class-based recognition system.
Each circle uniformly distributed around the object indicates a Viewpoint
Class. Since the recognition results from each Viewpoint Class (i.e., CNN
outputs at t = 1, 11, 12) are aggregated as the same weight, even if the cam-
era idles in a bad position (t = 1 ∼ 10), the accuracy of the recognition
result increases in the end.

circle. The methodology of distributing viewpoints is based
on work by Saff et al. [33]. N points can be distributed uni-
formly over the surface of a sphere whose radius r is 1 with
following equations.

θγ = arccos(hγ), hγ = −1 +
2(γ − 1)
(N − 1)

, 1 ≤ γ ≤ N,

φγ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝φγ−1 +
3.6√

N

1√
1 − hγ

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (mod 2π),

2 ≤ γ ≤ N − 1, φ1 = φN = 0,

0 ≤ θγ ≤ π, 0 ≤ φγ ≤ 2π

(1)

θγ and φγ are defined in the polar coordinate system. We
store each coordinate ψγ ∈ R3 that is generated by convert-
ing θγ and φγ into xyz coordinates.

As shown in Fig. 1, the Recognition Phase also con-
sists of 3 stages. In the first stage (i.e., Sect. 3.3.1), we judge
whether each object region included in the current frame is
observed from a new Viewpoint Class. In the second stage
(i.e., Sect. 3.3.2), for each object that is judged to be ob-
served from a new Viewpoint Class, the object region in the
current RGB frame is fed into the CNN. In the last stage
(i.e., Sect. 3.3.3), the output of the CNN is accumulated to
the recognition result of the object region of GSM. There-
fore, our method doesn’t require the recognition of the ob-
ject type of each segment before Sect. 3.3.1, since each ob-
ject in the current frame is recognized in the Recognition
with CNN stage and the recognition result is incremented to
the GSM in Sect. 3.3.3. Following are the details for each
stage.

3.3.1 Viewpoint Class Judgment

The objective of this stage is to determine if the current cam-
era pose belongs to the new Viewpoint Class for each object
O j. We perform the following processing for each object ap-
pearing in the propagated label map Lp

t . Notably, because
processing targets are limited in objects appearing inLp

t , the
computational cost is maintained in O(n2) (i.e., the size of
the input image) even if the GSM becomes large.

First, we compute the vector Vct
j starting at the centroid

C j and ending at the current camera position tt in world co-
ordinates with Vct

j = tt − C j for each object O j. At this
time, the current camera position tt is already computed in
the Camera Pose Estimation Stage. Next, the vector Vct

j is
normalized to length r (i.e., a radius of the sphere in which
the Viewpoint Classes are distributed). Figure 4 shows the
vector Vct

j in blue. Considering that each prepared View-
point Class ψγ is distributed on a sphere whose center is the
origin of the coordinate, we can determine the Viewpoint
Class to which the current camera pose belongs by compar-
ing vectors ψγ and Vct

j . Thus, the γ that minimizes the dis-
tance between ψγ and Vct

j is the Viewpoint Class to which
the current camera pose belongs.
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γ̄ j = argmin
1≤γ≤N

‖ψγ − Vct
j ‖ (2)

We denote the Viewpoint Class as γ̄ j. We denote the recog-
nition result of an object O j from Viewpoint Class γ as Ωγ j .
If the recognition result Ωγ̄ j is empty, the object Oj is recog-
nized in the next stage and its index is denoted as ĵ.

The upper right image in Fig. 3 shows the Viewpoint
Classes with the centroids of each object O j as the center
by simply adding each vector ψγ to each centroid C j. The
Viewpoint Classes from which objects have already been
recognized are colored red and the others are gray.

3.3.2 Recognition with CNN

After the objects recognized in this stage are determined,
segments of each object O ĵ in the RGB image of the current
frame are cropped based on the propagated label map Lp

t .
Each cropped image I ĵ shows the appearance of the object
O ĵ from the new Viewpoint Class ψγ̄ ĵ

. Then, if the image
I ĵ is much smaller than the input size of the CNN or the
percentage between the total number of labeled pixels of the
object O ĵ, which can be calculated by the propagated label
mapLp

t , and the size of image I ĵ is lower than the threshold,
it is discarded.

Next, these images are input into the CNN, which has
been tuned by deep learning with a specific dataset (e.g.,
ImageNet [2], [3]). In our method, any CNN structure that
takes one input RGB image and outputs class probabilities
can be used as described in Sect. 1. Therefore, we can use
any object database as long as it has RGB images with a
correct object label. Since a variety of datasets for CNN
and trained CNN models are recently provided, the range of
application of our method can be extended.

At this time, the softmax function is not applied to the
output of the CNN because merging the outputs of the CNN
from each Viewpoint Class and calculating the class prob-
ability are performed in the next stage. CNN models for
object recognition usually apply the softmax function to the
output of the CNN to calculate probabilities. In our method,
the output of the CNN is stored without applying the soft-
max function, and the outputs of the CNN from multiple
viewpoints are accumulated for each object, and then the
accumulated result up to the current frame is applied to the
softmax function to calculate class probabilities of the ob-
ject. We call the CNN output without the softmax function
“the raw output.” The raw output of the CNN is stored as
Ωγ̄ ĵ

, which signifies the recognition result of the object O ĵ
from the Viewpoint Class ψγ̄ ĵ

.

3.3.3 Merging the Recognition Results

To recognize each object, the recognition results are merged
and renewed for each object O ĵ with the following equa-
tion, where ψr

j represents a subset of Viewpoint Classes from
which the object O j has already been recognized.

yλ
ĵ
=

exp
(∑

γ j∈ψr
ĵ
Ωγ j (λ)

)

∑i=Λ
i=1 exp

(∑
γ j∈ψr

ĵ
Ωγ j (i)

) (3)

At this time, λ shows the object category to be recognized.
Therefore, when the total number of categories to be recog-
nized isΛ, the domain of λ is 1 ≤ λ ≤ Λ, λ ⊂ N. The proba-
bility yλ

ĵ
that the objectO ĵ categorized to λ is calculated with

ψr
ĵ
, the total number of categories Λ, and Ωγ j (i), which de-

notes the CNN output of category i from a Viewpoint Class
γ j of an object O j. The concept of this equation is applying
a softmax function after adding the CNN outputs. In Fig. 4,
the “Recognition Results” refer to the added CNN outputs
and the colored circles represent the Viewpoint Classes from
which the object has already been recognized. In this case,
the probabilities are simply calculated by applying a soft-
max function to the added outputs.

4. Experiments

In this section, we experimentally demonstrated the valid-
ity of our method. In our experiments, we evaluated our
method on the popular UW RGB-D Dataset (v2) [5], [6]
and our own dataset. In Sect. 4.1, we compared our method
with the current state-of-the-art methods by Lai et al. [4], [5]
and Pillai et al. [21] that utilize full map and camera posi-
tions, respectively, for improved recognition performance.
The UW RGB-D Dataset contains a total 295 object cate-
gories, however, for a fair comparison, we considered the
same 5 categories as noted in [4], [5], [21]. Subsequently,
we demonstrated the performance of our method by increas-
ing the number of objects to all 295 categories. In Sect. 4.2,
the validity of the recognition based on Viewpoint Class was
demonstrated using our own dataset and scenes.

Following are the details of the evaluation environ-
ment. CPU: Intel Core i7-4770K 3.50GHz, GPU: GeForce
GTX 760 and RAM: 16GB. The deep learning frame-
work used in this evaluation experiment was Chainer [34].
Throughout the experiment, the number of Viewpoint
Classes was 700.

4.1 UW RGB-D Dataset

The CNN model selected for use in this experiment was Net-
work In Network (NIN) [35] because it is useful for cutting
the classification processing time by reducing the number
of parameters while maintaining high accuracy. Since the
UW RGB-D Dataset provides mask images, we masked the
region for each object on each training image. Next, we
trained the CNN model by randomly rescaling and adding
noise for robust predictions. In the Recognition with CNN
stage (Sect. 3.3.2), the regions for each object determined to
be input to the CNN under the conditions of the Viewpoint
Class Judgment stage (Sect. 3.3.1) were masked based on
the propagated label map Lp

t and input to the CNN as in the
training.
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Table 1 Precision/Recall rate using the UW RGB-D scene dataset [5], [6].

Method View(s) Input
Precision/Recall

Bowl Cap Cereal Box Coffee Mug Soda Can Background Overall
DetOnly [4] Single RGB 46.9/90.7 54.1/90.5 76.1/90.7 42.7/74.1 51.6/87.4 98.8/93.9 61.7/87.9
Det3DMRF [4] Multiple RGB-D 91.5/85.1 90.5/91.4 93.6/94.9 90.0/75.1 81.5/87.4 99.0/99.1 91.0/88.8
HMP2D+3D [5] Multiple RGB-D 97.0/89.1 82.7/99.0 96.2/99.3 81.0/92.6 97.7/98.0 95.8/95.0 90.9/95.6
BoVW+FLAIR [21] Multiple RGB 88.7/70.2 99.4/72.0 95.6/84.3 80.1/64.1 89.1/75.6 96.6/96.8 89.8/72.0
Ours Multiple RGB 96.2/91.8 92.2/95.9 98.4/96.1 91.9/87.1 91.7/89.3 94.0/100.0 94.1/93.4

Table 2 Average time spent on each processing stage.

(Unit: ms)
Proposed Frame-based DetOnly [4] HMP2D+3D [5] BoVW+FLAIR [21]

Viewpoint Class Judgment 1.0 - - - -
Recognition with CNN 98.9 229.8 - - -
Recognition Result Merging 10.7 - - - -
Total 110.6 229.8 ≈ 1800 ≈ 4000 ≈ 1600

We evaluated the recognition performance of our
method on each scene in the UW RGB-D Dataset. We cal-
culated precision, recall, and mean-Average Precision using
the ground truth annotations provided in a bounding box.
In this method, object recognition is performed in the pixel
level. For the fair comparison of the proposed object recog-
nition with the other methods, we compute the recognition
accuracy for the pixel area of each recognized object sur-
rounded by a bounding box by comparing it with the ground
truth. Therefore, if segmentation fails, the bounding box
will be drawn in a different part from the ground truth, which
makes the score lower. Table 1 shows the mean-Average
Precision (mAP) estimates of our method and the existing
methods reported in [4], [5], [21]. As shown in Table 1, we
were able to achieve a performance of 94.1 mAP as com-
pared to the detector performance of 61.7 and the SLAM-
aware BoVW+FLAIR performance of 89.8.

Table 2 shows the processing time for each stage. We
compared our proposed method with the frame-based recog-
nition method. In this comparison target, the CNN model
for recognition was the same as the one used in the pro-
posed method and was trained with the same dataset. How-
ever, the recognition result was not aggregated as in the
proposed method. In other words, the recognition result of
the comparison method was simply computed by inputting
cropped images based on the propagated label map Lp

t into
the trained CNN model for each frame. The average pro-
cessing time for the Viewpoint Class Judgment stage was
relatively short because the comparison of the vector to the
current camera position and each Viewpoint Class is per-
formed by Nearest Neighbor search for three-dimensional
vectors. Furthermore, the average processing time for the
Recognition with CNN stage of the proposed method was
short compared to the frame-based method because only
the cropped image of the object whose recognition result
from current Viewpoint Class is empty is recognized in the
Recognition with CNN stage. Thus, the number of images
inputted to the CNN was decreased and the processing time
was shorter than the frame-based method. Considering that
the SLAM and Segmentation Phase achieved 72 fps [1], our
system can work in real-time. Table 2 also shows advantages

of SLAM-and GSM-based object proposal and CNN-based
feature extraction in terms of processing time, compared
with conventional methods using sliding-window-based de-
tection and HOG-and FLAIR-based classification.

Next, we describe recognition performance where the
number of objects is increased to 295 to verify the scalabil-
ity of our method. Figure 5 shows the 3D model of the scene
reconstructed by the SLAM framework, the camera trajec-
tory depicted in green line, and recognition results in sev-
eral frames. The recognition results were shown by filling
in the objects with red based on the propagated label map
Lp

t and denoting the most probable category and its prob-
ability as calculated by Eq. (3). As shown in Fig. 5, even
if the number of categories was increased to 295, sufficient
recognition accuracy was achieved. Figure 6 shows the flow
as the recognition result becomes increasingly accurate by
aggregating object evidence across multiple viewpoints. As
shown in Fig. 6, one of the limitations of our method is that
the object in the scene is divided (e.g., inside and outside of
coffee mug) since the segmentation is based on normal and
vertex information.

4.2 Validity of Viewpoint-Class-Based Approach

This experiment demonstrates that our method successfully
improves the recognition accuracy by detecting the View-
point Class according to our proposed method. We com-
pared our method with the accumulation-based method,
which accumulates CNN outputs for each frame to each ob-
ject in the scene without considering the Viewpoint Class.
In other words, the accumulation-based method that simply
integrates all of the frame recognition results to calculate the
final recognition result, as with conventional methods typi-
fied by [21]. We prepared the scene such that the camera
idled in a bad position in the second half frame. The target
objects in this experiment were books. We picked cover im-
ages of 33 books from the Web and generated 500 learning
images with a homography transformation for each book. At
that point, we masked the region for each book and added
noises to the learning images with the method described in
Sect. 4.1.
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Fig. 5 Recognition results in several frames, 3D model of the scene reconstructed by SLAM
framework, and camera trajectory depicted in green line.

Fig. 6 Flow as the recognition result becomes accurate through the multiple view approach.

Fig. 7 Results of the experiment using our own dataset, which aimed to validate the efficiency of the
Viewpoint-Class-based approach by comparing our method with the accumulation-based method (left:
ours, right: accumulation-based).

Figure 7 shows the recognition results for each frame.
The results of the Viewpoint-Class-based approach were
more precise than the accumulation-based method, espe-
cially in the frame after camera stagnation. This is because
the object was recognized from each Viewpoint Class with
the same weight, while the accumulation-based method ac-
cumulated inaccurate recognition results from poor camera
positions.

5. Conclusions

In this work, we developed a Viewpoint-Class-based ob-
ject recognition system that achieves real-time processing,
scalable performance, and robustness for camera movement.
We leveraged a state-of-the-art SLAM-based segmentation
method for object proposals and utilized a CNN for fu-
ture extraction to handle even smooth-surfaced objects and
achieve high scalability. Furthermore, by uniformly dis-

tributing Viewpoint Classes around each object and aggre-
gating recognition results from each Viewpoint Class, ro-
bustness for camera movement was achieved. These con-
tributions of our system were demonstrated through vari-
ous experiments using the UW RGB-D Dataset and our own
dataset. Moreover, the results were superior to conventional
methods.
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