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〈あらまし〉 本手法では，Structure from Motion (SfM) を用いて事前に作成した環境地図に合わせた Visual

Odometry (VO: 画像による自己位置推定手法)によるカメラ軌跡の推定手法とその利用方法を提案する．提案手法
では，VOの一つとして Direct Sparse Odometry (DSO)を取り上げ，この DSOの出力を用いて環境地図上での
カメラ位置姿勢の再計算を行う．その際，これらの関係づけられたカメラ位置姿勢を用いてポーズグラフを作成し最
適化することで，DSOで推定される全フレームの環境地図上への位置合わせを実現する．そのため，本手法は単眼
のカラーカメラのみで利用でき，学習データも不要であるという利点を有する．提案手法により，事前観測して作成
した環境地図と現在ユーザが観測する光景との差から変更のあった箇所を物体単位で認識するシステムを実装し，実
験室環境でリアルタイム動作が可能であることを確認した．さらに，既存のデータセットを用いた精度評価の実験を
行った結果，提案手法では DSOのみを用いた場合に比べ位置姿勢推定の精度が向上した．

キーワード：カメラ位置姿勢推定, ビジュアルオドメトリ, 3次元再構築, グラフ最適化, 個別物体領域分割

<Summary> We propose a method for estimating camera trajectories optimally aligned with prepared

environment maps and its application. We implement Direct Sparse Odometry (DSO) as real-time Visual

Odometry (VO) and Structure from Motion (SfM) to build environment maps. In this process, a pose graph

is created and optimized using related camera poses to calculate the alignment of all frames from DSO

towards the environment map with the scales matched. Therefore, the proposed method runs solely with

a monocular color camera and does not require any training datasets. We demonstrate that the proposed

method is able to be used as an object-based recognition system based on the difference between a map as a

prior information and the current scene observations by the user. We tested this real-time application in a

laboratory environment. In addition, we conducted an experiment to evaluate the accuracy of the proposed

method using an existing dataset. The results showed that the proposed method improved the accuracy of

pose estimation compared to the case using only DSO.

Keywords: camera pose estimation, visual odometry, structure from motion, graph optimization, instance

segmentation

1. は じ め に

画像のみを用いてカメラ位置姿勢と環境地図を実時間で逐

次推定する Visual Odometry (VO: 画像による自己位置推

定手法) は自動運転や拡張現実感 (AR)の基幹技術として考

えられている1)．奥行推定のできない通常のカメラによるVO

では，カメラ位置姿勢と環境地図間の相対的スケールしか推

定できないため，VOにより得られる環境地図のスケールは，

VO初期化の際のカメラの動かし方やその方法に依存して実

行ごとに異なり，実世界の絶対スケールを得ることはできな

い．このため，事前に作成した高精度な環境地図や地図上の

位置に紐づけられた情報を，VO実行時に得られる環境地図

と正しいスケールで対応付けられないという問題があった．

慣性計測装置 (IMU) や地球上での絶対位置が得られる
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図 1 システム概要
Fig. 1 System overview

Global Positioning System (GPS) などを組み合わせたセ

ンサフュージョンは，環境地図上で実世界のスケールに基づ

いてカメラの位置姿勢を推定する手法である2)～4).センサを

増やす方法に対して，単眼のカラーカメラの入力画像から

Convolutional Neural Network (CNN) を用いて距離画像

を推定する手法5),6)は，学習方法によって実世界のスケール

で距離画像を推定することができる．しかし，教師付き学習

に基づく仕組み上，大量の学習データが必要であり，テスト

環境が学習データと類似していなければならないなどの制約

がある．また従来より，事前構築された環境地図上でカメラ

位置姿勢を推定する手法が多数提案されている7),8)．これら

の手法は，フレームごとにデータベースとマッチングを取っ

てカメラ位置姿勢を求めるのみであるため，連続したフレー

ムの幾何学的関連性を考慮したものにはなっていない．

本論文では，事前準備した環境地図上で，単眼のカラーカ

メラから得られた画像シーケンスによって全てのフレームで

カメラの位置姿勢推定を行うことを目的としている．そのた

め，単眼カラーカメラ入力画像列に VO 手法の一つである

Direct Sparse Odometry (DSO)9)を適用して，得られるス

ケール未知の環境地図と事前に作成した環境地図間で奥行値

の比較により，DSOによりスケール未知で推定されるカメ

ラ位置姿勢を事前作成の環境地図のスケールに合致させて推

定する手法を提案する．さらに，環境地図上で DSOの位置

姿勢を取得することによる 3次元構造を用いた物体差分検出

の手法を提案する．

これによって以下のような利点が挙げられる．まず，(1) VO

を用いることで環境地図情報が一時的に得られない場合でも

カメラの位置情報を得ることができる上，(2) 環境地図を参

照できる場合はそこから得られる高精度な奥行情報を用いて

ドリフト誤差を解消できる．よって，(3) 提案手法を用いて

DSOによって求めた位置姿勢を環境地図上で補正すること

で，既存のDSOのみを用いた場合に比べて精度良くすべての

カメラ位置姿勢を環境地図上で推定することができる．また，

(4) 環境地図上で DSOのカメラ位置姿勢を推定することに

よって環境地図上に紐づけをしておいた情報へのアクセスが

可能になる．その利用例として個別物体領域分割 (Instance

Segmentation)を用いて， 環境地図が持つ物体識別ラベル

と DSOの入力画像から得られた物体識別ラベルの比較によ

る物体の差分検出を実現できる．

2. 関 連 手 法

2.1 VOと SLAM

VO9),10)はカメラ画像を用いてカメラの自己位置推定をす

るための枠組みである．入力画像シーケンスから画像間のマッ

チングと 3次元復元を同時に行い，カメラの自己位置とそれ

までの軌跡を推定する．VOは入力画像から直近の数フレー

ムを用いてカメラの位置姿勢と環境の 3 次元構造を最適化

する仕組みになっているので，ドリフト誤差が生じるとその

誤差を解消する方法はなく，常に誤差が蓄積していく構造と

なっている．それに対して Simultaneous Localization and

Mapping (SLAM)2),3),11)ではこのようなドリフト誤差を軽

減するための仕組みとして局所最適化やバンドル調整，Loop

Closureといった機能が盛り込まれている1)．

こういった最適化の仕組みにかかわらず，VOや SLAMで

は連続した画像シーケンスの中で直前に推定した 3次元構造

に対する相対的なカメラ位置姿勢を推定することしかできな

い．よって，得られる環境地図やカメラ位置姿勢は実世界の

スケールに基づいておらず，使用者のカメラの動かし方や被

写体に応じて異なるスケールで出力される．そのため，実世

界のスケールで環境地図に固定されている 3次元コンテンツ

を，VOや SLAMから得られた位置姿勢により AR表示す

るなどの用途には利用できなかった．

Visual-Inertial Odometry (VIO) はこのような問題を解

決する一つの方法とであり，IMUによって求められたスケー

ルによって，カメラの自己位置を実世界のスケールに合わせ

ることができる．VIOによって事前取得した環境地図に現在

の軌跡を登録していく手法は近年提案されている12),13)．ま

たGPSを用いて SLAMと実世界のスケールとの対応関係を
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得る方法も提案されている14)．

このような複数センサを組み合わせた手法に対して，提案

手法は，センサを組み合わせることなく，単眼のカラーカメ

ラのみを用いて事前取得した環境地図にVO手法の一つであ

る DSOから得られた軌跡を同一座標系，同一スケールで登

録することが可能である．これによって事前に取得した環境

地図に付随している物体識別ラベルを参照して，DSOによっ

て推定された 3次元構造から物体の差分検出が可能になる．

2.2 事前準備した環境地図上でのカメラ位置推定

事前に取得した環境地図に対応したカメラ位置姿勢を求め

る方法として，環境地図内のランドマークと入力画像の特徴

点を紐づけることでカメラの自己位置姿勢を推定する手法が

ある7),15),16)．これらの手法では環境地図のランドマークが

画像内に写っていることが前提となっているため，登録した

ランドマークが写っていない画像に対して位置姿勢を推定す

ることはできない．

また，PTAMMは複数回の試行で得られた複数個のローカ

ルマップを統合する手法として提案された17)．しかしこの手

法は机の周りのような小規模なシーンを想定して作られてい

る．また，これらのVOでは，環境地図を作成した手法と同

一の手法を用いて，自己位置姿勢推定を行いながら，再度ト

ラッキングをするのが一般的である．そのため，事前取得し

た環境地図を構成する特徴量とVOのトラッキングに用いら

れる特徴量が同一であることが前提となっている．また VO

に用いた手法と同様の手法を用いて環境地図を作成する際，

環境地図とVOの両方で，同じ箇所でトラッキングに失敗す

る恐れがある．

従来では，事前準備した環境地図上でカメラ位置姿勢を求

める際は，環境地図と照合されたフレームのみでの位置姿勢

を求める手法が着目されてきた7)．それに対して提案手法で

は，ランドマークが観測できないフレームでも，VOによって

マッチングが得られた位置からの相対的な位置姿勢を取得す

ることができる．これによって，すべての入力画像シーケン

スでカメラの自己位置姿勢を推定することができる．また最

先端のVOを用いることで，机周りのような小規模なシーン

にとどまらず KITTIデータセット18)のような屋外の大規模

なシーンでも利用が可能である．さらに事前準備する環境地

図と VOで異なる 3次元点の作成方法を利用するため，VO

でトラッキングに失敗するような箇所を環境地図で補間する

ことができる．さらに，スケールを合わせて推定を行うこと

で，実行ごとの利用を目的としたVOでは実現できなかった，

環境地図による 3次元構造とVOによるカメラ位置姿勢を利

用した，物体の差分検出を可能にする．

3. 提 案 手 法

本手法は，事前に取得した画像シーケンスから Structure

from Motion (SfM)を用いて全体最適化を行った 3次元環境

地図を作成するオフライン処理と，入力画像に対して，VO

の一つである DSOを用いて環境地図上でのカメラの自己位

置推定を行うオンライン処理から成る．オンライン処理を行

う際には，環境地図のスケールから DSOのスケールを補正

し，座標系の統合を逐次行うことで DSOで得られた情報を

環境地図上に反映する．さらに　オンライン処理において，

環境地図と現在取得した画像との個別物体領域分割の結果を

比較することで，新たに環境地図に加えられたものと，環境

地図から取り除かれたものを 3次元構造を用いて差分検出す

ることが可能になる．

3.1 システム概要

図 1に提案手法の概要を示す．単眼カラーカメラ入力画像
列からカメラの位置姿勢をオンラインで推定する手法として

VOと vSLAMが広く用いられている．本手法では環境地図

を基にオンラインで推定中の軌跡の補正を行うため，逐次入

力される画像列のみでバンドル調整や Loop Closureなどの

大域最適化を行う vSLAM のような枠組みを用いる必要が

ない．よって，VOをオンラインでの軌跡推定に用いる．ま

た，本手法では VO を単体で動かすよりも高精度にカメラ

位置姿勢を推定することを目的とするため，環境地図の作成

には VO よりも精度よくカメラ位置姿勢を推定できる方法

を用いる．そのため同じくカラーカメラ画像群を入力とする

SfMを環境地図の作成に利用している．SfMはすべてのフ

レームを使って全体最適化しているため，VOや SLAMと

比較して高精度にカメラの自己位置推定と 3次元形状の復元

を行うことができる．そこで，オフラインでは SfMを用い

て事前に環境地図Gを作成する．Gにはスケール sSfMで作

成した距離画像に加えて，カメラ位置姿勢，Bags of Binary

Words (BoW)19)のデータベース，個別物体領域分割の結果

が含まれている．

オンラインでは入力画像に対して DSOを用いてカメラの

位置姿勢推定を行う．その際の DSO のスケールは sVO で

表される．本手法では事前に作成した環境地図上に DSO の

軌跡を紐づける．つまり，環境地図に対して DSOの入力画

像の自己位置姿勢推定をする必要がある．関連した技術に，

vSLAMに用いられている Loop Closureがあり，これは連

続していない時刻に観測された画像を BoW による類似画

像検索を使って位置合わせする手法として広く用いられてい

る2),3)．本手法の目的である，連続していない時刻に観測さ

れた画像を既存の地図に合わせて自己位置姿勢推定をするこ

とは，Loop Closureの目的と合致しているため，本手法で

は Loop Closureを参考にして，BoW を用いて自己位置姿

勢推定を行う．その結果をもとに画像間の特徴点マッチング

と Perspective-n-Point(PnP)問題を解くことで環境地図上

でのカメラ位置姿勢を推定している．その際，DSOの距離

画像と環境地図の 3次元構造を比較することによって sVOと

sSfM の比率を計算し，また類似フレームが見つからなかっ
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図 2 VO座標系から環境地図座標系への座標系変換による
奥行値の取得

Fig. 2 Obtaining depth values through coordinate sys-
tem transformations from VO coordinate system
to SfM coordinate system

たフレームに対しても，グラフ最適化を行うことによって，

DSOによって計算されたカメラ位置姿勢を環境地図上で再

計算し登録を行う．

手法の応用としてオンラインの入力画像に対して個別物体

領域分割を行い，その結果をあらかじめ取得して環境地図が

保持している個別物体領域分割の結果と比較することによっ

て環境地図に対する物体識別ラベルの差分検出を行う．ここ

では環境地図作成時と比較して新たに追加されたものと，取

り除かれたものに関して検出を行う．

3.2 SfMを用いた環境地図の作成

オフラインでの処理として，事前取得しておいたM 枚の

画像から SfMを用いて環境地図Gを作成する．ここで SfM

を用いて作成された環境地図はカラー画像群 ISfM，距離画像

群DSfM，その時のカメラ位置姿勢 TSfM によって構成され

ている．今後，i番目 (< M)におけるカラー画像，距離画

像，カメラ位置姿勢はそれぞれ ISfMi ∈ ISfM，DSfM
i ∈ DSfM，

T SfM
i ∈ TSfM と定義する．それに加えて DSO の入力に用

いられるフレームに対する類似フレームを ISfM のなかから

検索して得るために，ORB 特徴量20)F SfM
i ∈ FSfM による

BoW データベースの作成を行う．

また環境地図と DSOへの入力との差分検出を行うために

ISfMに対して個別物体領域分割を行い，各フレームの物体識

別ラベルを得る．SfMによって推定された 3次元点群をそれぞ

れ ISfMに再投影して各 3次元点が持つ物体識別ラベルの集計

を行う．ここで一つの点が複数のラベルを持っている際には，

最も票数の多いラベルをその点のラベルとする．また各点に

対して，同一ラベルをしきい値以上の保有している点のみ有

効だと判定し，LSfMとして環境地図に保存する．本手法では

このしきい値を 3フレーム以上とした．よって本手法では事前

準備した環境地図を G ∈ {ISfM,DSfM,TSfM,FSfM,LSfM}
と定義する．

3.3 環境地図上でのVOの位置姿勢推定

オンラインでは，事前取得した環境地図上でのカメラの位

置姿勢推定と 3次元構造の推定をVOを用いて行う．単眼の

カラーカメラを用いたVOでは，作成される 3次元構造のス

ケール sVO が初期化の際のステップ幅などに依存してラン

ダムに定まる9)．そのため事前に作成した環境地図上で VO

の位置姿勢を推定するためには，VOのスケールを環境地図

のスケールに合わせたうえで，カメラ位置姿勢や 3 次元構

造を補正する必要がある．そこで本手法では DSOによって

得られた距離画像DVO と環境地図を構成している距離画像

DSfM を用いて，各ピクセルの奥行値を比較することで環境

地図と DSOのスケールの比率を取得する．

はじめに，DSOの入力画像に対して環境地図の入力画像

ISfM から類似する画像の探索を行う．入力画像が DSO の

キーフレーム IKF ⊂ IVO として扱われた場合，そのフレー

ムから得られた BoWベクタ FKF を用いて式 (1)を満たす

環境地図内のフレームを取得する．

1− 1

2

∣∣∣∣ F SfM
i

|F SfM
i |

− FKF

|FKF|

∣∣∣∣ > tBoW (1)

ここで tBoW は BoWの類似画像検索結果のしきい値を表し

ており，iは環境地図のフレームのインデックスを表している．

該当フレームが複数取得できた際には，スコアが高い順に

上位数フレームを該当フレームとして使用することとする．

該当したフレームに対して，ISfMi と IKF の間で ORB特徴

量を用いた特徴点マッチングを行うことによって 2D–2D の

特徴点対応を得る．また ISfMi で得られた 2次元特徴点と距離

画像DSfM
i ，環境地図を作成する際に用いたカメラパラメー

タから世界座標系上での 3次元点を取得する．IKF上の一つ

の特徴点に対して，複数の ISfM でマッチングする特徴点が

得られた際，それぞれのマッチング点の世界座標系上での 3

次元位置を計算した後にそれらの点の重心の計算を行う．重

心と各点の分散の計算を行い，値がしきい値以下であれば有

効な 3次元点として扱う．最後に IKF から得られた特徴点

とDSfM から得られた 3次元点から，3D–2D対応によって

PnP 問題を RANSACを用いて解くことによって，環境地

図に対応する IKFでのDSOのカメラ位置姿勢を得ることが

できる．

次に，2D–2Dマッチングを得られた 2次元点のうち，DSO

から得られた距離画像 DVO が値を持っている点を用いて，

DSO と環境地図の相対スケール sVO→SfM を得る．相対ス

ケールの算出については後述する．事前マップを再利用する

ことができる DSOを用いる際には，環境地図から得られた

特徴点と DSOから得られる特徴点で同一のものを用いてい

る2),17)．しかし本手法では環境地図の作成に SIFT特徴量を

用いており，DSOでは輝度値を直接参照している．そのた

め，環境地図と DSOから作成された 3次元点群を同一のも

のとして扱うことができない．よって，このようなマッチン
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図 3 環境地図を用いたグラフ最適化の概念図 (左)と実際のマッチング結果 (右)
Fig. 3 Graph optimization using an environment map (left) and a matching result (right)

グをベースとした距離画像による位置姿勢の再計算とスケー

ルの補正が必要になる．

図 2はVO座標系から環境地図座標系への座標変換を表し

ている．ここでは，PnP問題を解くことで得られたカメラ位

置姿勢を T̂KF，DSOによって推定されたカメラ位置姿勢を

TKFとする．DSOのカメラ座標系は，DSOから推定された

距離画像DVOの奥行値 dとDSOの画像座標W = (u, v, 1)

によって，tVO = dKVO−1
W と表すことができる．KVO

は DSOの入力画像を取得しているカメラの内部パラメータ

を表している．これを用いて SfM のカメラ座標系上への変

換を式 (2)を用いて表すことができる．(
tSfM

1

)
≃ TSfM−1

T̂KFTKF−1

(
tVO

1

)
(2)

ここで tSfM の第 3成分は，SfM画像座標系における各ピク

セルの奥行値を表しており，これを dVO
p と表すこととする．

対応するピクセルに対する SfMによって得られた奥行値を

dSfMp とすると式 (3)を用いて相対スケールを求めることが

できる．

sVO→SfM =
1

n

∑
p∈Ω

dSfMp

dVO
p

(3)

ただし，p ∈ Ωは画像の 2次元平面Ωの中のピクセル pを表

している．ここでピクセル pは PnP問題を解く際に 2D–2D

マッチングを得ていて且つDVO が値を持っているピクセル

のみである．また条件を満たしているピクセル数の合計を n

とする．DSOから得られる距離画像DVOは距離センサなど

で得られるものに比べて疎なものとなっている．DSOは入

力画像にのみ依存して独立して動作をしているため，常にド

リフト誤差が蓄積し続ける．そのため式 (3)から得られる相

対スケールの値は DSOの蓄積誤差によって変化するので一

定ではない．よって，マッチングを行うたびに式 (3)による

計算を行い，相対スケールの値を更新する必要がある．

3.4 キーフレームにおける位置姿勢補正

ここでは，3.3節で ISfM ∈ ISfM とマッチングが得られず

位置姿勢推定を行うことができなかったフレームに対して，

sVO→SfM を用いて位置姿勢の補正を行う．位置姿勢の補正

は，直近の 3.3節の処理を行ったフレーム IKF
m から現在の入

力フレーム In までに対する処理と，IKF
m とそれ以前に 3.3

節の処理を行ったフレーム IKF
m−1 との間のフレームに対する

処理の 2種類に分けられる．

前者に対して式 (4)を適用しVO座標系から対応する環境

地図座標系へと変換を行う．

TVO→SfM
n := sVO→SfMT̂KF

m TKF
m

−1
TVO

n (4)

ここで，TVO→SfMは，環境地図座標系でのカメラ位置姿勢，

TVOは，VO座標系でのカメラ位置姿勢を表している．また

フレーム nで得られた奥行値に関しても sVO→SfM によって

環境地図のスケールへと補正を行う．

後者のフレーム群に対しては，グラフ最適化を用いたカメ

ラ位置の補正を行っている．図 3は提案手法でのポーズグラ
フの作成を表している．すべてのキーフレーム iのカメラ位

置に対して，その直前 i − 1のカメラ位置とのエッジ ei,i−1

の作成を行い以下の式のようなポーズグラフの作成を行う．

ei,i−1 =
((

TKF
i−1

)−1
TKF

i

)((
T̂KF

i−1

)−1

T̂KF
i

)
(5)

マッチングが得られたフレームに関しては，T̂KF
i は PnP問

題を解くことによって得られた位置姿勢を表しており，TKF
i

は i番目の DSOのカメラ位置姿勢を表している．g2oアル

ゴリズム21)を用いて次の式のポーズグラフを最適化する．こ

こでは x = (T1, ...,Tn)としたとき，xを最適化したカメラ

位置姿勢である x∗ を求める．

F(x) =
∑

⟨i⟩∈N

eTi,i−1Ωi,i−1ei,i−1 (6)

x∗ = arg min
x

F(x) (7)

ここで N は最後にマッチングしたフレームを表しており，

Ωi,i−1 は情報行列を表している．式 (7)をレーベンバーク・

マーカート法を用いて解くことによってそれぞれのカメラ位

置姿勢に対して最適化21)を行い，新たにカメラ位置姿勢群 x∗

を得る．

3.5 環境地図を利用した物体差分検出

環境地図内のラベル LSfM と 3.4 節によって補正されたカ
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(a) DSOによる 3次元復元結果 (b) 全体最適化を行った環境地図 (c) 環境地図上への DSO の出力登録結果

図 4 提案手法による 3次元復元結果
Fig. 4 3D reconstruction results of proposed method

(a) DSO入力画像 (b) 比較に用いた環境地図入力画像 (c) 差分検出結果

図 5 提案手法と DSOとの差分
Fig. 5 Difference between the proposed method and DSO

メラ位置姿勢結果を用いて，3次元構造を利用した物体の差

分検出を行う．DSOのキーフレーム IKF ⊂ IVOに対して環

境地図を構成するフレーム ISfM の中から対象フレームとの

距離の L2ノルムと画角の角度差がしきい値未満のフレーム

IComp ⊂ ISfM を取得する．環境地図を作成する際に IComp

を用いて作成された点群に注目し，それらの点群をフレーム

IKF 上に再投影する．また IKF に対して個別物体領域分割

を行い，各画素に対して個別物体領域分割ラベルを取得する．

再投影されたラベルと取得したラベルとの差分を取得して，

差分値がしきい値以上の際には新たに加えられたラベル，ま

たは取り除かれたラベルと判断する．これによって新たに環

境に出現した物体や環境から取り除かれた物体の検出を行う．

4. 評 価

本手法の有効性を示すために，定性的な評価として，自作

したデータとパブリックデータセットにおいてあらかじめ作

成した環境地図上でVOが動作することを示す．定量的な評

価として，パブリックデータセットを用いてカメラ位置姿勢

推定の精度を測定し，本手法によって VOの精度が SfMの

精度に近づくことを示す．この実験結果を通して提案手法が

VOの問題点となる蓄積誤差とドリフト誤差を軽減できてい

ることを示す．また各処理に要する時間の測定を行った．最後

に，個別物体領域分割を用いた差分検出に関して自作のデー

タセットを作成し，あらかじめ作成した環境地図に対して追

加された物体と取り除かれた物体の検出を行った．

4.1 実装

本手法では COLMAP22)を用いて SfMを行い環境地図G

を作成した．COLMAPの距離画像はフォトメトリックとジ

オメトリックの 2 通りの方法で作成されているが本手法で

はジオメトリック手法によって得られた距離画像を用いてい

る23)．それに加えて各フレームに対してORB特徴量の計算

を行い，DBoW3を用いて画像データベースの作成を行った．

さらに各フレームに対しいて Yolact24)を用いて個別物体領

域分割を行いフレームごとに物体識別ラベルを作成した．撮

影した際のカメラ位置姿勢に対するドリフト誤差を軽減する

ために撮影画像は画像シーケンスの中から五枚に一枚の量で

間引いて COLMAPの入力とした．

本手法では，3.3節で説明したように，距離画像を介して

環境地図に対するVOのスケールを算出している．そのため，

他の手法と比較して密に奥行推定を行うことができる DSO

を VO の基礎として選択した．これを以下の 2 点において

拡張した．まず，BoWを用いたマッチングのためのスレッ

ド，ポーズグラフ最適化のためのスレッド，差分検出のため

のスレッドを追加した．次に，ポーズグラフ最適化のために

Direct Sparse Odometry with a Loop Closure (LDSO)3)

のループクロージャーの箇所と類似したフレームワークを用

いて，g2oによるグラフ最適化を行っている．

4.2 環境地図上へのVOの投影結果

図 4から図 7は本手法を用いて環境地図上にVOの推定結

果を投影したものである．図 4は屋内の自作データに対して処
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(a) LIDAR による 3次元点群を入力画像に投影した結果 (b) (a) にバイラテラルフィルタリングして生成した距離画像

図 6 KITTIデータセットの LIDAR点群からの距離画像作成結果
Fig. 6 Output of depth image from LIDAR point cloud of KITTI dataset

(a) KITTI データセットにおける LIDAR で作成した環境地図での提案手法の
出力結果

(b) EuRoC データセットにおける連続してい
ない画像群に対する提案手法の出力結果

図 7 提案手法による軌跡の出力結果
Fig. 7 Output results of the trajectory by the proposed method

理を行った結果で，環境地図上 (図 4(b))でのDSO(図 4(a))

の実行結果 (図 4(c))を示している．環境地図は物体識別ラ

ベルによって色が付随しており，DSOへの入力画像に対する

個別物体領域分割の結果と環境地図との差分から環境におけ

る物体の差分検出を行っている (図 5)．図 5では画像 (a)の

DSO入力画像に対して，環境地図入力画像として用いられ

た画像 (b)と比較すると，画像 (c) において本が新たに環境

に現れた物体として検出されていることを示している．図 7

はそれぞれ KITTIデータセット18)と EuRoC MAVデータ

セット25)に対して処理を行った結果である．KITTIデータ

セットは車載のステレオカメラで街を走行した大規模なデー

タセットである．KITTIデータセットには真値を持つ訓練用

のシーケンス (00 ∼ 10)と真値を持たないテスト用のシーケ

ンス (11 ∼ 21)が含まれている．EuRoC MAVデータセッ

トではステレオ画像，IMUデータ，カメラの軌跡の真値を含

む 11の画像シーケンスが提供されている．画像シーケンスは

異なる 3種類の環境で撮影されており，Machine Hallが五

種類のシーケンス (MH01 ∼ MH05)，Vehicon Room 1が

3種類 (V101 ∼ V103)，Vehicon Room2が 3種類 (V201

∼ V203)それぞれ提供されている．

KITTIデータセットでは，提案手法のより広い汎用性を

示すために SfMにより事前に生成した環境地図を用いる代

わりに，LIDARと GPSによって測定された結果を環境地

図に用いた．LIDARによって計測された環境の 3次元点群

を入力画像に投影 (図 6(a))し，バイラテラルフィルタ26)を

用いて距離画像 (図 6(b))を作成した．この距離画像とGPS

のデータから環境地図を作成した．ステレオ画像のシーケン

スであるので左カメラの画像を環境地図の入力に，右カメラ

の画像を DSOの入力として提案手法を実行した．その結果

として図 7(a)が得られた．また，EuRoC MAVデータセッ

トでは，Machine Hallの五種類の画像シーケンスからラン

ダムに画像を 350枚選び，連続していない画像群を入力とし

て SfMを用いて環境地図を作成した．図 7(b)はその結果を

表している．図 7(a),(b)ではそれぞれ緑の四角錐が環境地図

のカメラの位置姿勢を，赤線が提案手法の軌跡を表している．

また提案手法の各処理機能が要する処理時間の測定を行い，

表 1 にまとめた．本手法は三つのスレッドから構成されて
いる．DSOの結果を受け取りその他二つのスレッドに出力

を割り振るメインスレッド，3.3節と 3.4節の処理を行うマッ

チングスレッド，出力を表示するビューアスレッドから成る．

1フレームを処理するのに要する時間はメインループの処理

速度と等価である．メインループが処理を行う上で，類似画

像の抽出に成功したときマッチング処理が開始され，表 1の

マッチングにまとめられた処理が行われる．MH01を環境地

図にしてMH02を DSOの入力として全 3040フレームに対

して測定を行った．3040フレームの中で 331回マッチング

処理が起動している．今回の実験では Intel Core i7-7700，

3.60GHzのプロセッサとメモリ 32GB，NVIDIA GeForce

GTX 1060のグラフィックカードから成るデスクトップパソ

コンを用いている．本手法ではデータ量が増えた際，BoW

の類似画像検索にかかる時間，点群のレンダリング，オフラ

インでの環境地図の作成とその読み込みにかかる時間が増え

る．そこで KITTIデータセットのシーケンス 00，4541枚

の画像に本手法を適用した．ステレオカメラの右側の映像で

環境地図を作成し，左側の映像をオンラインでの入力とした．

その結果，トラッキングの処理速度の平均は 1フレーム当た
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り 87.8±38.8msecであった．処理時間に加えてこのシーケ

ンスでは環境地図として 11.9GBのデータをロードしている．

より多くの画像を扱って環境地図を作成する際は，マッチン

グスレッドの完了速度が遅くなるので，3.3節の処理に関し

て，より時間がかかることが想定される．また点群のレンダ

リングを行わないことや，参照する環境地図を場所によって

ロードして，切り替えるといった実装をしてメモリの使用量

を抑える必要性があると考えられる．

4.3 Sim(3)補正を用いたAPE結果

EuRoC MAVデータセットを用いて提案手法の精度を検

証した．それぞれの撮影環境に対して，一つのシーケンスを

環境地図の作成に，その他のシーケンスをVOの入力として

使用して実験を行った．いずれの画像シーケンスにおいても

ステレオ画像の右側の画像のみを用いて環境地図の作成，VO

への入力を行った．

本手法の有効性を示すためにAbsolute Pose Error (APE)

の測定をそれぞれのシーケンスでの実行結果に対して行った．

ここでは，入力画像に対して推定された位置姿勢と真値の

位置姿勢の比較を行い，回転行列と並行移動ベクトルの平

均二乗誤差を結果として表している．APEの評価は最適化

を行う DSO のキーフレームに対してのみ行った．本手法，

DSO，Colmapの位置姿勢推定結果に対して，梅山補正27)に

よる Sim(3)補正をおこなって位置姿勢とスケールの最適化

を行った．

表 1 提案手法の各機能処理時間
Table 1 Processing time of each component

スレッド 処理 処理回数 (回) 時間 (msec)

メイン メインループ 3040 122.76

マッチング 特徴点マッチング 331 203.59
カメラ位置推定 313 70.39
グラフ最適化 10 2.23

表 2はEuRoC MAVデータセットにおけるMachine Hall

とVehicon Rooms 1，2の結果を表している．表中の×印は

十分なマッチングを取得できずシステムが起動できなかった

ことを表している．結果として，提案手法では環境地図との

マッチングによってドリフト誤差が軽減されるため，全ての

シーケンスにおいて DSO よりも高い精度でカメラの位置姿

勢推定を行うことができた．提案手法は類似画像検索から得

られるマッチング結果に依存して，環境地図上での DSOの

カメラ位置を推定している．そのため類似した視点から撮影

された画像が得られない場合，期待した結果を得ることがで

きない．表 2の Vehicon Room2の結果において，V201と

V203の組み合わせは互いにマッチングを得ることができな

かったのでシステムが起動しなかった．またMachine Hall

に関して，MH01とMH02，MH04とMH05はそれぞれ似

たような視点からの撮影を行っているため，互いに他方を環

境地図にしたときの結果が最もよくなっていることがわかる．

なお，表 2における (Colmap)はColmapによって推定され

たカメラ位置姿勢と真値との APE測定結果を表している．

また図 8 は，MH01 を環境地図にして，本手法を用いて

五つのMachine Hallシーケンスすべてに対して位置合わせ

とスケール合わせを行い，同一のスケールで表した結果であ

る．各色ごとに一つのシーケンスの軌跡推定結果を表してお

り，破線は真値による軌跡を梅山補正によって重畳したもの

である．このように同様の環境地図を用いて提案手法の軌跡

推定を行うことによって，異なる時系列で撮影されたシーケ

ンスを同一の環境地図上に，Sim(3)補正を行うことなく投

影できていることがわかる．

さらに環境地図を保存して，保存した環境地図上で自己位

置姿勢推定を行いながら SLAMを実行する機能を持ってい

る OpenVSLAM28)との比較検討を行った．KITTI データ

表 2 EuRoCデータセットにおけるAPE測定結果 (RMSE)

Table 2 APE in the EuRoC dataset (RMSE)

シーケンス 提案手法 DSO (Colmap)
XXXXXXXXXVO

環境地図
MH01 MH02 MH03 MH04 MH05 – –

MH01 – 0.046 0.069 0.058 0.069 0.280 (0.031)
MH02 0.029 – 0.049 0.074 0.054 0.270 (0.017)
MH03 0.124 0.173 – 0.254 0.185 0.630 (0.036)
MH04 0.249 0.258 0.344 – 0.068 0.572 (0.049)
MH05 0.104 0.150 0.272 0.085 – 0.509 (0.045)
XXXXXXXXXVO

環境地図
V101 V102 V103 – – – –

V101 – 0.148 0.200 – – 0.344 (0.141)
V102 0.080 – 0.094 – – 0.631 (0.049)
V103 0.830 1.242 – – – 1.009 (0.063)
XXXXXXXXXVO

環境地図
V201 V202 V203 – – – –

V201 – 0.105 × – – 0.262 (0.030)
V202 0.142 – 0.052 – – 0.589 (0.025)
V203 × 1.544 – – – 1.611 (0.029)
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セットのシーケンス 00に対して，自己位置姿勢推定のみの

評価を行うために，OpenVSLAMのループ機能が動作しな

い最初の 1000フレームに関して実験を行った．ステレオカ

メラの左側カメラ画像を環境地図の入力，右側画像を DSO

の入力とした．またその際，環境地図に用いる画像群を全フ

レームから 3フレームに 1枚，5フレームに 1枚，7 フレー

ムに 1枚と間引いて実験を行った．この結果を表 3に示す．
OpenVSLAMでは環境地図を SLAMを使って作成している

ためフレームを間引いてしまうと環境地図を作成することが

できず測定を行うことができなかった．それに対して提案手

法ではフレームを間引いた際にも環境地図を作成することが

図 8 EuRoC Machine Hallデータセットの全シーケンスに
対して，同一の環境地図を用いて軌跡推定を行った結果

Fig. 8 Results of trajectory estimation using the same
environment map for all sequences of the EuRoC
Machine Hall dataset

表 3 OpenVSLAMとの APE測定比較結果 (RMSE)
Table 3 Comparison of APE measurements with Open-

VSLAM (RMSE)

手法 1 1/3 1/5 1/7

提案手法 6.91 2.71 1.31 ×
OpenVSLAM 8.05 × × ×

できていることがわかる．提案手法ではこのように連続でな

いフレームを環境地図として扱うときに有効であることがわ

かる．

4.4 物体の差分検出実験

自作のデータセットに対して環境地図を作成して本手法を

適用した．その後，環境に新たに物体を加えて，環境に加わっ

た物体が検出できるかを評価した．図 9は検出結果を表して
おり，画像 (a)が DSO への入力画像，画像 (b)が環境地図

で参照されたフレームの画像である．それに対して画像 (c)

は物体の差分検出結果であり，上段では環境に新たに追加さ

れたノートパソコンが，下段では環境から取り除かれたキー

ボードが検出されている．

5. む す び

本論文では SfMを用いて事前に作成した環境地図に合わ

せた VO によるカメラ軌跡の推定手法とその利用方法に関

して提案した．提案手法は，SfMを用いて作成した環境地図

を BoWデータベースによって参照することにより，VOの

一つである DSOによって推定されたカメラ位置姿勢の補正

を行う．そして，補正されたカメラ位置姿勢を含めた DSO

の軌跡からポーズグラフを作成し，グラフ最適化を行うこと

によって DSOによって求められた軌跡を補正する．そのた

め，本手法は単眼カラーカメラのみで利用でき，学習データ

も不要であるという利点を有する．また補正された環境地図

上ので軌跡をもとに，3次元構造を用いた物体の差分検出を

行った．

提案手法の有効性を示すために自作した複数のシーケンス

で環境地図に合わせたスケールでの DSOの実行結果を示し

た．また定量的な評価として，既存のデータセットを用いて，

DSOのみを用いた場合に比べて提案手法による補正を行っ

(i)環境に新たに追加さ
れたノートパソコンの
検出

(ii) 環境から取り除か
れたキーボードの検出

(a) VO画像 (b) 環境地図画像 (c) 検出結果

図 9 個別物体領域分割による差分検出結果
Fig. 9 Change detection by Instance Segmentation
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たほうが高い精度の位置姿勢推定を行うことができることを

示した．また，差分検出の具体例として，物体識別ラベルの

差分を用いて環境に新たに追加された物体や環境から取り除

かれた物体の検出に本手法が有用であることを示した．
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